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Figure 1: Total cross section. It is remarkable that oy IS
approximately constant in the interval of 10 - 100 GeV.
The Froissart constrain: o < In?s.
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Figure 2: Mean multiplicity. The mean multiplicity in
QCD jet n(s); and in the eTe~ annihilation processes is
relatively high: Inn(s); ~ VIns.

Main problem:

Why is the process of incident energy dissipation stopped
at such an early stage that n(s) << +/s/m,?
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e Input idea: the symmetry constrain may prevent
thermalization.

e We will consider:

— The necessary and sufficient condition,
when thermalization is achieved.

— The way how this effect may be observed
experimentally.

e The thermalization effect is important since

— The.long-range " confinement"” forces
should be switched out.

— The coloured plasma is produced.

— The "rough” thermodynamical description
is applicable.

— The "collective phenomena” can be observed.
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~— 4. Definition of the VHM region

e General definition:
n >> n(s)
e T he inelasticity coefficient:
_ E — €max
k= _— "
FE
e Kinematical definition:

€max
0<
E

emax - energy of the fastest particle in the given frame.
e Restriction from above:

=1-k<<1

E
n<<Nmax = —, M~ 0.2 GeV.
m

e VHM are rear processes:
On < IO_TUtot

™~

<n>Pin)

— A: multiperipheral kinematics domain;
— B: |p| << m — thermodynamical limit of multiplicity;
— C: VHM domain.



~————5. VHM phenomenology -

e Only three classes of asymptotics can be realized:
I: o,<O(e™): multiperipheral interactions
II: o,=0(e™™): hard processes
III: o, > O(e ™) : vacuum instability

e We offer to measure cross sections only with logarithmic
accuracy considering
1  otot
p=+<e>—In—=,
n On

< € > is the mean energy of secondaries.
In the high multiplicity region:

w(n) I
A
n
Figure 4: "Chemical potential” p = — <& > 2In % vs.

multiplicity. Case I corresponds to the multiperipheral
model; case II is predicted by the QCD jet; III — is a case
when the vacuum is unstable against particle production.
The latter case may include a situation with final-state
interactions. To distinguish this possibility, one should
investigate the analytical properties of u over n.
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e The straight line gives a Poisson distribution.
There is the following decomposition:

u(z) =3 (2 - DFCL,
k

Cr — the binomial moment, C1(s) = n(s).

e T he deviation means that the multiplicity distribution
is wider than the Poisson’s.
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Figure 5: Chemical potential vs. activity z.
o If

Ki(E,n)[*! << K2(B,n) 1=3,4,.. (%),
then the thermalization occurs.
The correlation functions are usually defined as follows:

Ko(n,E)=<e*:n,E> -~ <e';n,E >,
Ki(n,E) =<e®n,E>-3<e®,n,E><e';nE>+2< el:n, E >3,

etc.
B ws [e(a)Pae(@)de - e(a)dPq {d¥on(E) /dPadie - - dq }
e n, =
[ Bqrd3qz- - d3q {d¥on(E)/dBq1d3qz - - - dBqi}

e Our conclusion (%) is general, it weakly depends on
details of dynamics.

e It is easy to prove that the system is equilibrium in the
domain B.



e T heory

e Multiperipheral (Regge) kinematics:
— Longitudinal momenta:
m << |pi| << |pi+1], 1 =1,2,..,n— 1.
— Transverse momenta:
|kil = const, 1t =1,2,...,n — 1.
e DIS kinematics:
— Longitudinal momenta:
lpi| = const, i =1,2,...,n — 1.
— Transverse momenta:
m << |ki| << |ki+1], 1 =1,2,...,n — 1.
e VHM kinematics:
— k| ~ Ips| €< E, 4= 1,2,...,n.

Byl

Figure 6: Produced hadrons phase space.
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- -8. Multiperipheral models -

e The amplitude of one Pomeron approximation:
A%, (s,t) = igagp(s/s0)*P 71,
a(t) = a(0) +'(0)t, 0 < a(0) -1 << 1,
a'(0) =1 GeV72, 50 =1 GeV?
e Multiplicity distribution:
O'E 2, e_ﬁ(")(ﬁ(s))”/n! (Poisson)

e Range of the multiperipheral models validity:
— Mean impact parameter of v Pomeron exchange:

b2 ~ 4a'In(s/s0) /v,
— b2~ a'ﬂfﬁ if n~vn(s)
— Therefore, for the Regge multiperipheral model
n<n(s)? if ab22>1

e The cross section must sharply fall down for

n > n(s)?.



e The probability to find parton b in parton a is Dy, (z, ¢%; n),
where

Da(2,9°) = ) Dap(z,4%n), as(A) << 1.

e |_eading logarithm approximation:
— In(1/z) >> Inin|¢?|
— In(1/z) << In lqz/)\zl.

— A2 << k? << —¢?, where k2 > 0 is the " mass”
of a produced gluon.

e Leading Logarithm Approximation in HM region:
— w(r,z) << In(l/z) << 7 = In(—¢g2/)) ,
— w(n,2) =3, 2" 7 uwl(r),

wy, — the multiplicity distribution in the gluon jet.

Figure 7: Feynman ladder diagram: _q} b -—q% T



———10. VHM process scenario -
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— ns ~ n?(s) — the multiperipheral kinematics threshold
— np > ng — the LLA kinematics threshold

— VHM region — the region of thermalization



———11. Prediction of generators -
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Figure 10: HIJING: K3/K,. The soft tendency to ther-
malization is seen from this picture. From this point of
view the ion collisions, probably, are interesting.



~ - 12. Topological QCD

— There is no tendency to equilibrium in existing
theoretical models.

— The VHM processes are hard.
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Figure 11: Transverse momentum vs. multiplicity. The
Tevatron data (E-735 Group). This result is in strong
contradiction with-the multiperipheral model. -

Properties of topological QCD (a new theory of VHM)
— The LLA is not applicable.

— tQCD includes the perturbative QCD.

— The theory is free from divergences.

— Expansion is performed over 1/g.

— Thermalization effect.



~————13. Experiment-—

e Main problems:
— The thermalization problem.

— Quantitative definition of the range of validity of the
LLA in the high multiplicity domain.

— Phase transition in the coloured state.

— The " pre-confinement” VHM state presents
the equilibrium coloured plasma.

— The process of VHM production is " fast”: the isotop
spin orientation may be frozen randomly and large
fluctuations of the charge must be valid.

e The following parameters as a function of energy £ and
multiplicity n should be measured in the VHM domain:

x the ratio of the correlators
(|K3(E, N)[*3/K2(E,N)) << 1
— to observe thermalization;

% the ratio of the mean values
of the produced particles momentum

(py(E,n)/pL(E,n)) = 7/2
— to see the tendency to thermalization;
x the " chemical potential”

1
p(E,n) = — < €> —Inon/0t0
n
— to observe the phase transition —
(coloured plasma)—(hadrons);
* the ratio of the number of charged to neutral particles
nC(E7 n)/nO(E:n)
to see the vacuum topological defect.



—-—-14. Conclusion

The next steps
to observe the thermalization effect are:

e from the theoretical point of view:

— to construct the generator of VHM events based on
tQCD;

e from the experimental point of view:
— to solve problems of trigger,

— to obtain the experience in the analysis of the VHM
events. , : |



