Search for new Filysics at HENA

XVI Rencontres de Physique de la Vallée d'Aoste La Thuile, 3-9 March 2002

Jürgen Scheins (DESY Hamburg) on behalf of the H1 and ZEUS collaborations

Introduction to HERA Leptoquarks, Lepton Flavour Violation R_p violating SUSY High P_T Lepton Events Anomalous Top Production Contact Interactions Summary & Outlook

- HERA is unique in probing electron-quark interactions at high energies
 ⇒ Ideal to look for new particles coupling to eq pairs
- Proton structure at distances of $10^{-16} \ {\rm cm}$ for highest momentum transfers Q^2 can be probed

 Leptoquarks (LQ) predicted by many extensions of SM, e.g. GUT, SU(5) or SU(15)

 \rightarrow symmetry between lepton & quark sector

- Scalar or vector color triplet bosons with lepton and baryon numbers
 - \Rightarrow Fermion Number: F = 3B + L = 0, 2

 $(e^+p \text{ mainly sensitive to LQ with } F = 0, e^-p \text{ to } F = 2 \text{ LQs})$

• Production at HERA via Yukawa coupling $(\propto \lambda^2)$

- Generic models: Branching Ratios $\beta_{eq} \equiv \beta(LQ \rightarrow eq), \ \beta_{\nu q} \equiv \beta(LQ \rightarrow \nu q)$ free parameters
- Buchmueller Rueckl Wyler (BRW) model:
 - $-SU(3) \times SU(2) \times U(1)$ invariance
 - LQs only couple to chiral SM fermions
 - 14 species, 7 scalars and 7 vectors
 - BR fixed: $\beta_{eq} = 1, \frac{1}{2}, \ \beta_{\nu q} = 0, \frac{1}{2}$
- Dominant background from DIS processes

- Decay distributions:
 - flat in y for scalar LQ
 - $\propto (1-y)^2$ for vector LQ
 - $\propto 1/y^2$ for NC DIS

 \Rightarrow improved Signal/Background with optimised y cuts

 \Rightarrow Good agreement with SM expectation for both experiments \Rightarrow Limits on couplings and branching ratios (BR) are derived

Linits on Coupling A

Limits on λ for LQ from BRW model (\rightarrow fixed β)

 $\Rightarrow e^-p$ data specifically sensitive for LQs with F=2

$$\Rightarrow$$
 for couplings $\lambda = \sqrt{4\pi \alpha_{
m em}} \simeq 0.3$:
 $M_{
m LQ} < 275$ GeV excluded on 95% CL

Leptoquark Limits on Dianching Natio p

- \Rightarrow HERA extends limits to small branching ratios β_e
- \Rightarrow HERA limits more stringent than TeVatron limits for large values of λ (TeVatron limits independent on λ)

J. Scheins, XVI Rencontres de Physique de la Vallée d'Aoste

• Search for processes $eq \rightarrow \mu q'$ or $eq \rightarrow \tau q'$ (LFV) \Rightarrow Mediation via LQs possible

two coupling constants involved: λ_{eq} and $\lambda_{\mu q'}$

 Sensitivity on heavy quarks (b): More stringent limit on λ compared to low energy experiments

J. Scheins, XVI Rencontres de Physique de la Vallée d'Aoste

R-Parity Violating Supersymmetry

- $R_p = (-1)^{L+3B+2S}$ broken \Rightarrow SUSY particles ($R_p = -1$) singly produced and LSP not stable
- At HERA $\lambda'_{1jk}LQ\bar{D}$ Yukawa couplings can be tested \rightarrow Lepton Number Violation (especially sensitiv to $eq \rightarrow \tilde{t}$)
- look for resonant particle production decays:

Nor any violating Supersymmetry

Unconstrained (phenomenological) MSSM:

Assume that sfermions and gaugino sector not related \Rightarrow sfermion masses $M_{\tilde{q}}$, $M_{\tilde{l}}$ free parameters

Limits variation in parameter scan:

- Limits are widely model independent
- $\lambda'_{1j1} = 0.3$ (elem. strength): $M_{\tilde{q}} < 260$ GeV are excluded at 95% CL

N-1 any violating Supersymmetry

• Constrained models:

- Sfermion and gaugino sector related by RGE
- $m_0 = \text{common fermion mass at GUT scale}$
- $m_{1/2}$ = common gaugino mass at GUT scale

• particular case of minimal Supergravity (mSUGRA):

- additional assumption: electroweak symmetry breaking driven by radiative corrections
 - \Rightarrow only 5 parameters: m_0 , $m_{1/2}$, sign(μ), tan β , A_0

High P_T Lepton Events

• Excess of High P_T isolated lepton events with large missing transverse momentum observed by H1

(H1 Coll. Eur.Phys.J. C5(1998)575)

- Topology of the events:
 - High Energy Lepton
 - Lepton is isolated:
 large distance to tracks & jets
 - Missing P_T
 - High P_T Jet (P_T^X)
- Most likely SM interpretation is W production

J. Scheins, XVI Rencontres de Physique de la Vallée d'Aoste

High P_T Lepton Events

H1 preliminary 94-00 $e^+p~(101.6~{ m pb}^{-1})$	Electron Obs./expected (W)	Muon Obs./expected (W)	combined Obs./exp.
$p_T^X > 25 \; { m GeV}$	$4/1.29 \pm 0.33 \ (1.05)$	$6/1.54 \pm 0.41 \ (1.29)$	$10/2.8 \pm 0.7$
$p_T^X > 40 \; { m GeV}$	$2/0.41 \pm 0.12 \ (0.40)$	$4/0.58 \pm 0.16 \ (0.53)$	$6/1.0 \pm 0.3$

 \Rightarrow more events than expected from SM processes at high P_T^X in H1 for e^+p data \Rightarrow in e^-p data (14 pb⁻¹) no deviations seen (0/1.8 ± 0.4)

ZEUS preliminary 94-00 $e^{\pm}p~(130~{ m pb}^{-1})$	Electron Obs./expected (W)	Muon Obs./expected (W)	combined Obs./exp.
$p_T^X > 25 \; { m GeV}$	$1/1.14 \pm 0.06 \ (1.10)$	$1/1.29 \pm 0.16 \ (0.95)$	$1/2.4 \pm 0.22$
$p_T^X > 40 \; { m GeV}$	$0/0.46 \pm 0.03 \; (0.46)$	$0/0.50 \pm 0.08 \ (0.41)$	$0/0.96 \pm 0.1$

 \Rightarrow Good agreement with SM expectation for ZEUS

T including of Fight T reprove Lycins

• Isolated leptons at hight P_T^X have all positive charge except one μ -event

Anomalous Single Top Troduction

- Single Top production in SM is negligible
 ⇒ top signal would indicate New Physics
- Production via Flavour Changing Neutral Currents due to anomalous coupling κ_{γ}

e

• H1 excess of high P_T lepton events at large P_T^X \Rightarrow Search for Anomalous Single Top:

b

Anomalous Single Top Troudection

• Hadronic W decay: 3 jets in final state

	Data/SM	
H1 prel.	$10/8.3^{+4.2}_{-1.9} \pm 4.2$	
ZEUS prel.	19/20.0	

- \Rightarrow No visible excess compared to SM
- \Rightarrow Limits on Anomalous Top Couplings are derived

Linits on Anomalous Top Couplings

Contact interactions

- Contact Interaction formalism allows for indirect searches of physics beyond SM
- At large scales Λ≫√s: New physics possibly observable as deviations from SM prediction due to virtual exchange of new particles → e.g. distorsion of Q²-spectrum at high Q²
- Parametrisation as effective low energy approximation

propagators contract to pointlike four fermion CI with effective coupling g^2/Λ^2

• Effective Lagrangian: (vector terms only)

$$\mathcal{L}_{CI} = \sum_{q=u,d} \sum_{a,b=L,R} \eta_{ab}^{q} (\bar{e}_{a} \gamma_{\mu} e_{a}) (\bar{q}_{b} \gamma^{\mu} q_{b})$$
8 couplings:

$$\eta_{ab}^{q} \equiv \pm (g/\Lambda_{ab}^{q})^{2}$$

• Different chiral structures are considered

Contact interactions

HERA I

H1 preliminary

Laige Litta Dimensions

- Space time with (4+n) dimensions (Arkani-Hamed et al.):
 - SM particles are confined in 4D world
 - Gravitions propagate also in n extra dimensions which are compactified to radius ${\cal R}$
 - R could be large (!): $R \sim 1/M_s$ with $M_s \sim \mathcal{O}(1 T eV)$
- Contribution of graviton exchange to $eq \rightarrow eq$ scattering can be described by an effective CI with couplings $\eta_s = \lambda/M_s^4$
- Limits are derived on scale M_s for $\lambda = \pm 1$

Cross Section Ratios

95% CL limits on M_s	$\lambda{=}{+1}$ (TeV)	$\lambda{=}{-}1$ (TeV)	
H1 prel.	0.83	0.79	
ZEUS prel.	0.81	0.82	

HFRA I data

 \Rightarrow ZEUS and H1 give very similar limits

- HERA unique collider to study eq interactions at high energies ⇒ ideal to look for new particles coupling to eq pairs
- No evidence for Physics beyond SM at HERA I
 ⇒ constraints on new physics were presented:
 - Leptoquarks $(F = 2: M_{
 m LQ} < 275 \ {
 m GeV} \ {
 m excl.} \ {
 m for} \ \lambda = 0.3$)
 - Lepton Flavour Violation
 - R_p violating SUSY (unconstrained MSSM: $M_{\tilde{q}} < 260$ GeV for $\lambda'_{1j1} = 0.3$)
 - Contact Interactions
 - Large Extra Dimensions $(M_S < 0.79-0.83 \text{ TeV excluded})$
 - Anomalous Top Production ($\kappa_{tu\gamma} < 0.19$ excluded)
- Search for Isolated Lepton Events still puzzling...
- Limits are competetive or complementary to LEP and TeVatron

J. Scheins, XVI Rencontres de Physique de la Vallée d'Aoste

- Luminosity Upgrade and Detector Upgrades completed
 - Improved Detectors \Rightarrow Increased Sensitivity
 - − New focussing Magnets
 ⇒ Increased Luminosity
- HERA II will give 1 fb^{-1} in ~ 5 years (Factor 10 increase)
- \bullet polarised e^\pm beams will give additional informations
 - e.g. increased squark production cross section

Searches have an exciting future at HERA !

Excited i ermons

- Excited fermions $f^* \Leftrightarrow$ evidence for compositeness
- Single Production of e^* , ν^* , q^* at HERA considered:

Search for different final state topologies

 (De-)excitation described by effective Lagrangian (Hagiwara et al.)

$$\mathcal{L} = \frac{1}{\Lambda} \cdot F_R^* \left[\mathbf{f} SU(2)_W + \mathbf{f'} U(1)_Y + \mathbf{f}_s SU(3)_C \right] F_L \quad (1)$$

A: Compositeness scale f, f', f_s : gauge group weights \leftrightarrow coupling strengths

• 95% CL limits on f/Λ for e^* under assumption f = f'

• 95% CL limits on f/Λ for ${m
u}^*$ under assumption $f=\pm f'$

- Much larger cross section for possible ν^* production in e^-p compared to e^+p (higher sensitivity)
- HERA limits more stringent at high masses beyond the kinematic reach of LEP II

J. Scheins, XVI Rencontres de Physique de la Vallée d'Aoste

•
$$Q^2 = -q^2 = xys$$

Four momentum transfer (virtuality)

• $x = \frac{Q^2}{2p \cdot q}$ Quark momentum fraction carried by the struck q

• $y = \frac{p \cdot q}{p \cdot l} = \frac{1}{2}(1 + \cos \theta^*)$ Inelasticity θ^* : polar angle of lepton in the eq cms frame

• $M = \sqrt{xs}$ quark-lepton invariant mass