Rare K decays with NA48

Roberto Sacco University of Edinburgh NA48 collaboration

Les Rencontres de Physique de la Vallée d'Aoste 06/03/2002

Outline

- NA48 experiment
- $K_L \rightarrow \pi^0 \gamma \gamma$ decays
- $K_s \rightarrow \pi^0 \gamma \gamma$ decays
- Future prospects

CP Violation in Rare Decays

Decays into 2π are very prolific. Due to the large amount of data collected, NA48 can see CP violation effects in rare decays (branching ratios in the range 10⁻⁵ - 10⁻⁸ and, in the future, 10⁻⁹ - 10⁻¹⁰)

Chiral Perturbation Theory

- χPT is the effective theory of the Standard Model at low energies (E < 1 GeV).
- The chiral symmetry of the QCD Lagrangian is spontaneously broken to SU(3)_v.
 - The degrees of freedom of the theory are the octet of pseudoscalar mesons (π, K, η) . They are massive because of breaking terms proportional to the quark masses.
- At order O(p⁴) the flavour-changing chiral effective Lagrangian contains dozens of unknown couplings.
- Rare K decays are the ideal tool to probe χ PT.

The K_L and K_S beams

The K_L and K_S beams

The Central Detector

06/03/2002

Roberto Sacco - Edinburgh University 7

Data Collection

- Data taken in 1997-1999
 - 450 GeV protons from SPS
 - 1.2-1.4 x 10^{12} ppp on K_L target
 - 3 x 10⁷ ppp on K_S target
 - duty cycle: 2.4 s/14.4 s
 - $3.2 \times 10^{10} \text{ K}_{\text{L}}$ decays/year
 - $6.5 \times 10^7 \text{ K}_{\text{S}}$ decays/year
- K_s only 1999 (2 days)
 - 6 x 10⁹ ppp on K_S target
 - 3 x 10⁸ K_S decays

Data Collection

- K_S only 2000 (~45 days)
 - 400 GeV protons from SPS
 - 9 x 10⁹ ppp on K_S target
 - duty cycle: 3.2 s/14.4 s
 - $1 \times 10^{10} \text{ K}_{\text{S}}$ decays
 - no drift chambers
- K_s only 2001 (~5 days)
 - full apparatus
 - same condition as 1999, larger statistics (~x2.5)
 - improved trigger

$K_L \rightarrow \pi^0 \gamma \gamma$ - Motivation

- Decay rate is finite at one loop in χ PT, but at O(p⁴) only 1/3 of measured rate is predicted.
- O(p⁶) calculations that include VMD reproduce the rate and predict a tail at low m_{yy}.

The VMD contribution are parameterised by a_V , to be measured.

06/03/2002

$K_L \rightarrow \pi^0 \gamma \gamma$ - Motivation

- χPT theoretical prediction (FMV+BMS):
 - $B(K_L \rightarrow \pi^0 \gamma \gamma) = 1.50 \times 10^{-6}$
 - a_v =-0.7
- A good measurement of a_V is fundamental to estimate the CP conserving amplitude for the process $K_L \rightarrow \pi^0 e^+e^-$

Vertex Reconstruction

$K_L \rightarrow \pi^0 \gamma \gamma$ - Selection

- Data collected in 1998 and 1999
- Trigger selection:
 - E_{LKr} > 50 GeV, COG < 15 cm, τ < 5.5 τ_S , < 6 peaks in LKr projections
 - overall efficiency > 99.9 %
- Event quality:
 - Select tagged K_L
 - 4 clusters in time and within LKr acceptance
 - $3 < E_{\gamma} < 100 \text{ GeV}$
 - 70 < E_K < 170 GeV

K_L→ π^0 γγ - Background

- Contributions from $K_L \rightarrow \pi^0 \pi^0$ rejected with a χ^2 like variable and the requirements:
 - $-\chi^{2}(\pi^{0}\gamma\gamma) > 300$
 - $|m_{1,2}$ -m_{π}| < 3 MeV and m_{3,4} ∉ [110-160] MeV
 - DCH in veto
 - $P_{T,4} > 40$ MeV, where $P_{T,4}$ is the transverse momentum of the lowest energy γ of the unpaired photon

Residual $K_L \rightarrow \pi^0 \pi^0$ background estimated using K_S -only runs: 4.1±2.1 events

06/03/2002

K_L→ π^0 γγ - Background

- Contributions from $K_L \rightarrow \pi^0 \pi^0 \pi^0$:
 - Missing photons
 - AKL veto
 - Restrict fiducial region to z < 30 m and R_{COG} < 4 cm
 - Missing and overlapping photons
 - Discrepancies between calculated π⁰, π⁰π⁰ and K decay vertices (99% effective, at the expense of 49% of good events)
 - Overlapping photons
 - Energy dependent cut on shower width

K_L→ π^0 γγ - Background

- Contributions from two overlapped in-time kaon decays:
 - Estimated comparing the normalised distributions of the center of gravity at the LKr for $K_L \rightarrow \pi^0 \gamma \gamma$ candidates and for a good $2\pi^0$ data sample.

Overall background: 3.2%

Caveat: most of the events in the low $m_{3,4}$ mass region are genuine $K_L \rightarrow \pi^0 \gamma \gamma$ where the wrong combination of photons was chosen. These events are used in the determination of the branching ratio but not to extract a value for a_V .

$K_L \rightarrow \pi^0 \gamma \gamma$ - Result (Preliminary)

~2500 candidates in the signal region 132 < m_{1.2} < 138 MeV

 $B(K_L \rightarrow \pi^0 \gamma \gamma) = (1.36 \pm 0.03(stat) \pm 0.03(syst) \pm 0.03(norm)) \times 10^{-6}$

KTeV: $B(K_L \rightarrow \pi^0 \gamma \gamma) = (1.68 \pm 0.10) \times 10^{-6}$

06/03/2002

Roberto Sacco - Edinburgh University

17

$K_L \rightarrow \pi^0 \gamma \gamma$ - Result (Preliminary)

a) $m_{3,4} \in [30,110] \text{ MeV}$ b) $m_{3,4} \in [160,240] \text{ MeV}$ c) $m_{3,4} \in [240,260] \text{ MeV}$

From a fit of the distribution of $m_{3,4}$ and $y(=|E_3-E_4|/m_K)$:

 $a_V = -0.46 \pm 0.03(stat)$ $\pm 0.03(syst) \pm 0.02(th)$

KTeV:
$$a_v = -0.72 \pm 0.05 \pm 0.06$$

06/03/2002

$K_L \rightarrow \pi^0 \gamma \gamma$ - Result (Preliminary)

No evidence of signal in the region $m_{3,4} < m_{\pi}$ \Rightarrow using events with y < 2 in 5 bins of $m_{3,4}$ between 30 and 110 MeV/c², we compute, in a model-independent way, at 90% CL:

 $B(K_L \rightarrow \pi^0 \gamma \gamma)_{m \in [30, 110], y \in [0, 2]} < 0.6 \times 10^{-8}$

From this computation, using our measurement of a_V , we can predict the CP-conserving contribution to $K_L \rightarrow \pi^0 e^+e^-$:

 $B(K_L \rightarrow \pi^0 e^+ e^-)_{CPC} = (4.7 \pm 2.2) \times 10^{-13}$

06/03/2002

$K_s \rightarrow \pi^0 \gamma \gamma$ - Motivation

• Again, χ PT predicts the branching ratio for this mode, with the cut-off $z=(m_{\gamma\gamma}/m_K)^2>0.2$ (to avoid the region with pion pole):

- BR(K_s $\rightarrow \pi^{0}\gamma\gamma$) = 3.8 × 10⁻⁸

• This mode has not been seen

$K_s \rightarrow \pi^0 \gamma \gamma$ - Selection

- Data from K_S high intensity run.
- No dedicated trigger was set up, so events satisfying $\gamma\gamma$ or $3\pi^0$ triggers were selected.
- Same event quality as for $K_L \rightarrow \pi^0 \gamma \gamma$ except:
 - COG < 7 cm
 - $-\chi^{2}(\pi^{0}\gamma\gamma) > 2000$
 - $z = (m_{\gamma\gamma}/m_K)^2 > 0.2$
 - $z_V < 8 m$

K_s→ π^0 γγ - Background

- Background from misreconstructed $K_s \rightarrow \pi^0 \pi^0$:
 - from MC, 0.1 ± 0.1 events are expected to contaminate the data after the selection cuts.

- Background from $K_s \rightarrow 3\pi^0$, $K_s \rightarrow \pi^0 \pi^0$ and $K_L \rightarrow \pi^0 \gamma \gamma$:
 - From simulation, about 0.14 events are expected to contaminate the data.

06/03/2002

K_s→ π^0 γγ - Background

 Background from K_s→π⁰π⁰ with three clusters into the acceptance and one random cluster accidentally in-time:

The time distribution for random events is supposed to be flat; the two surviving events have cluster times consistent with random events

06/03/2002

K_s→ π^0 γγ - Background

Furthest in time clusters wrt the event time for the two events surviving the cuts

2.1 ± 0.1 background events of this kind are expected to contaminate the data

The limit to the background rejection comes from the low statistics of available random events

06/03/2002

$K_s \rightarrow \pi^0 \gamma \gamma$ - Result (Preliminary)

The total kaon flux was estimated from $K_s \rightarrow \pi^0 \pi^0$ to be (3.06 ± 0.17) x 10⁸

2 events survive the selection cuts, consistently with the expectation of 2.4 \pm 0.2 background events

A total 6% of systematic uncertainty was calculated from various sources

The upper limit to the branching ratio, at a 90% confidence level, for $(m_{\gamma\gamma}/m_K)^2 > 0.2$ is therefore:

B(K_s $\rightarrow \pi^{0}$ γγ) < 4.4 x 10⁻⁷

06/03/2002

$K_{L,S} \rightarrow \pi^{0}I^{+}I^{-}$ - Motivation

 $K_L \rightarrow \pi^{0}e^+e^-$ has three components:

- CP conserving:
 - $B(K_L \rightarrow \pi^{0} e^+ e^-)_{CPC} \sim 10^{-13}$, dominated by twophoton processes $K_L \rightarrow \pi^{0}g^*g^*$
- Direct CP violating:
 - $B(K_L \rightarrow \pi^0 e^+ e^-)_{dir} \sim 4.5 \times 10^{-12}$
- Indirect CP violating:

-
$$B(K_L \rightarrow \pi^0 e^+ e^-)_{ind} \sim |\epsilon|^2 \tau_L / \tau_S B(K_S \rightarrow \pi^0 e^+ e^-)_{ind}$$

$$\chi PT: B(K_S \rightarrow \pi^0 e^+e^-) = 5.2(a_S)^2 \times 10^{-9}, a_S \sim 1$$

06/03/2002

Roberto Sacco - Edinburgh University

26

K_s→π⁰e⁺e⁻ - Result

No event survives the selection criteria in the 1999 data

Assuming for the simulation, from χ PT, a form factor $f_V(z) \sim 1 + z/r_V^2$, $r_V^2 = 2.5$, the total acceptance for $K_s \rightarrow \pi^0 e^+e^-$ is 7.5% $B(K_s \rightarrow \pi^0 e^+e^-) < 1.4 \times 10^{-7}$ at 90% CL (Phys.Lett.B514:253-262,2001) \downarrow $a_s < 5.2$ $B(K_1 \rightarrow \pi^0 e^+e^-)_{CPC} < 4.4 \times 10^{-10}$

06/03/2002

NA48/1 - Motivation

- $K_s \rightarrow \pi^0 I^+ I^-$, $I=e,\mu$
 - Bound Indirect CP Violation in the decay $K_L \rightarrow \pi^0 I^+ I^-$ to < 10⁻¹²
- Search for CPV in K_s decays
 - $K_s \rightarrow 3\pi^0$, $K_s \rightarrow \pi^+\pi^-\pi^0$
- Study of time dependent CPV asymmetry in $K_{S,L} \rightarrow \pi^+ \pi^- \gamma^*$
- Test of Chiral Perturbation Theory
 - $K_{S} \rightarrow \gamma \gamma, K_{S} \rightarrow \pi^{0} \gamma \gamma, K_{S} \rightarrow \pi^{0} \pi^{0} \gamma \gamma$
- Study K_s Dalitz and semi-leptonic decays
- Semi-leptonic and radiative neutral hyperon decays

$$- \quad \Xi^{\mathbf{0}} \rightarrow \Sigma^{+} e^{-} \nu, \ \Xi^{\mathbf{0}} \rightarrow \Sigma^{+} \mu^{-} \nu, \ \Xi^{\mathbf{0}} \rightarrow \Sigma^{\mathbf{0}} \gamma, \ \Xi^{\mathbf{0}} \rightarrow \Lambda \gamma$$

NA48/1 - Modifications

- Improvement of the K_s target station
 - Installation of sweeping magnet
 - Provision for a photon converter (8-13 X_0)

- Use NA48 detectors and beamline
- Beam Intensity can be increased hundreds of times wrt to double beam

NA48/1 - Modifications

- Upgrade of the Drift Chamber read-out
 - Minimise loss due to overflows (30% in 1999 test run)
- New readout procedure for LKr and upgrade of the online PC farm
 - Increase Level II bandwidth (currently limited by LKr)
 - Up to 1 Gbyte/burst

Sensitivity

- Instantaneous rate already achieved in 1999
 - 10¹⁰ ppp → 3×10^{10} K_s decays x 105 days
 - SES 6x10⁻¹⁰ for 5% acceptance x efficiency
- Upgraded Target Station (2002)
 - Expect x2 reduction in accidental rate
 - Increase beam intensity from 10¹⁰ ppp to 2 x 10¹⁰ ppp
 - SES \rightarrow 3 x 10⁻¹⁰ for 105 days
- Upgraded Drift Chamber Readout (2002)
 - Recover 30% of events (overflows)
 - SES \rightarrow 2 x 10⁻¹⁰ for 105 days

But we only have 78 days \Rightarrow hope in a better SPS efficiency!

Conclusions

- The NA48 rare decay program is providing interesting results in the field of χPT and CP violation in the neutral kaon sector
- NA48 has demostrated the capability to use the detector at high proton intensity
- We look forward to collecting K_s and neutral hyperon decays during the 2002 SPS proton run