

Simona Rolli TUFTS University LaThuile 2002

Outline of the talk

- Accelerator and detector upgrades
- Preliminary results from first data ~ 4-8 pb⁻¹
 - Tracking
 - Calorimeter system
 - Muon system
 - Trigger
 - SVT
- Plans for short and long term future
 - b physics
 - high pt : top/Higgs/exotica

Run 2 Detector Upgrades

Accelerator configuration

 $\sqrt{s} = 2.0 \text{ TeV}$ (increased cross section - top 40%) L up to $2x10^{32} \text{ cm}^{-2} \text{ s}^{-1} \implies$ increased statistics

- The CDF detector has been upgraded to handle the Tevatron's increased collision rate (operation at p p crossing times of 132 or 396 ns).
- The capability for total integrated luminosity in run II is limited by radiation damage to the silicon tracker. This is estimated to survive to ~ 5 fb⁻¹
 - in 2004 a major shutdown is scheduled to replace the Si detector.
- CDF & D0 have been significantly rebuilt to qualitatively improve performance.

•New central tracker drift chamber

 $N_{axial} = N_{stereo} = 48,$ $Dp_t/p_t < 0.001p_t$

- New silicon vertex detector
 7 layer, 3-D reconstruction, |η|<2
- •New front-end, DAQ and trigger electronics
 - Fully digital trigger L1 tracking trigger L2 secondary vertex trigger
- •New Scintillating tile end-plug calorimeters
- -Increased $\eta\phi$ coverage for muon detectors
- •New Scintillator time of flight system

Experiment status and plans

- Since operation start-up in the collision hall in March 2001, the CDF detector has been commissioned using ~ 20 pb⁻¹ of data provided by the Tevatron (utilized about 4 to 8).
- Most detector components are ready for physics quality data.
- Goal is first physics results by summer-fall 2002

Detector roll-in February 2001

Tracking system

- <u>Central Outer Tracker</u> : open cell drift chamber with maximum drift time 100ns (< 132 nsec bunch spacing) -improved stereo capabilities.
- Silicon Tracker :
 - double sided microstrips detector (r-φ, r-z info)
 - η coverage up to | η | < 2
 - increase z coverage in the luminous region
 - 3-D track reconstruction
 - impact parameter resolution
 - $\sigma_{\phi} < 30 \ \mu m$
 - $\sigma_z < 60 \ \mu m$
 - Inner most Layer00, r = 2.5cm
 - SVXII 5 layers 3 < r < 10cm
 - Intermediate Silicon Tracker
 10 < r < 20 cm

CDF Tracking Volume

Tracking data: J/ψ resolution

	Alignment	$N(J/\psi)$	σ (J/ψ)	ΔZ	S/B
COT	10,2	24409	22 MeV	800µ	1.62
+SVX rphi	10.2	10569	17 MeV	240µ	2.83
+3 Z hits	10,2	3288	16 MeV	160µ	4.28

*Pre-shutdown data with 4.3.0int1

*Latest runs 138021 gives r-phi si coverage for Jpsi 70%

Cosmic ray tracks

Photon e⁺e⁻ pairs reconstructed with COT

Particle Identification

Impact on physics

A Time of Flight system allows for particle identification over a broad fraction of momentum spectra.

Combined lavor tag

2/1 Signal/background

S:B = 2:1

20

18

16

- Physics associated with B-meson, in particular B_s^0 and B_s^0 mixing (unitary triangle verification)
- The average significance improves considerably: range of x_s (oscillation frequency) to observe B_s oscillations.

Significance (o) Significance Layer 00 + TOF 14 aver 00 + TOF 14 Layer 00 TOF Layer 00 TOF 12 12 Baseline CDF Baseline CDF 10 10 8 8 6 6 53 measurement 53 measurement 4 4 2 2 0 0 0 0 25 50 25 50 75 100 75 100 X_s ×,

20

18

16

6

Efficiency improvement of factor 3

S. Rolli, LaThuile March 2002

S:B = 1:2

Combined lavor tag

1/2 Signal/background

Calorimeter Upgrades

<u>Central calorimeters</u> retained from Run 1 with new readout electronics

- $|\eta|$ out to 1.0
- EM, hadronic and shower max readout
- projective towers with segmentation:

 $\phi \times \eta = 15^{\circ} \times 0.11$

New scintillator based plug calorimeter

- $|\eta|$ out to 3.6
- EM, hadronic and shower max readout
- central calorimeter $\eta \phi$ segmentation maintained as far as possible.

New forward calorimeter

- $|\eta|$ out to 5.5
- EM+hadronic showers

 Jets being selected on-line and are reconstructed offline. Algorithms are in place and well advanced

Dijets jets with Et ~ 400 GeV

Energy scale calibration ongoing (top mass)

Muon system upgrade

"Old" Run 1 central muon detectors performing well with new readout electronics

"New" extension and intermediate muon chambers will extend muon trigger from |eta| = 0.6 to 1.0

All muon detectors are in final position and included in level 1 trigger

Total muon coverage increased by about 50%.

W -> μ v transverse mass

Trigger system

Three Levels:

- Level 1:
 - Calorimeter:
 - <u>Object triggers</u> : threshold applied to individual towers(single tower);
 - <u>Global triggers</u> : threshold appliedafter summing energies from all towers (eg SumET).
 - eXtremly Fast Tracker (P_T>1.5 GeV)
 - Muons
- Level 2:
 - Calorimeter clustering:
 - <u>Silicon Vertex Tracker</u>
- Level 3: offline-like reconstruction

XFT and SVT trigger status

S. Rolli, LaThuile March 2002

Kr Mass (GeV/c2)

1.8

the first CDF runs where the L2 SVT trigger was actively selecting

The invariant mass is formed using hybrid tracks (SVT/COT)

SVT data

 $K_{s} \rightarrow \pi\pi$

events (October 2001).

n^e

1.08

¹⁸

What next?

B-physics

- very competitive, already with low statistics
 - semileptonic yields
 - semileptonic lifetimes (especially B baryons with 100-200 pb⁻¹)
 - production cross sections
 - charm physics (8D⁰/nb from the 2Track Trigger!)
 - J/ψ physics
 - hadronic modes
- High Pt and exotica
 - Top physics (run IIa)
 - The Higgs quest (need run IIb)
 - SUSY ? (the run I anomalies...)

Beauty and charm at CDF II

The trigger allows to reconstruct hadronic decays of $B_{s.}$ In hadronic decays it is possible to fully reconstruct the B meson, contrary to semileptonic decays where the v is not reconstructed.

Even in the semileptonic decay there is already a factor 2 gain in acceptance (ex, $B \rightarrow eD^0$ using lepton + SVT trigger gives ~45 evts/pb)

Beauty and charm at CDF II (cont'd)

Inclusive Charm

Just 1 pb⁻¹ should be enough to do a measurement of charm mesons production in several channels

The TTT yields about 8 D⁰/nb

 Adding several assumptions coming from MC/Data estimates (all expressed in thousands of events!):

	Dº	D±	D*±(2010)	D*0(2007)
В	240	160	65	110
Prompt	160	40	53	80

Half a million D⁰ !!! (50 pb⁻¹) $D^0 \rightarrow \pi\pi$ • And that's only $D^0 \rightarrow K\pi$ We can do plenty of things: - Cross section measurements

- cc/bb yield in hadron collisions
- Cabibbo suppressed decays: ≈150 D⁰→K⁺π⁻
- 44400 D⁰→K⁺K⁻
- 15900 $D^0 \rightarrow \pi^+\pi^-$
- cc mixing?

Top physics at CDF II

- For top physics an extra 30-35% in cross section is gained (1.8 to 2TeV). We also gain from acceptance/efficiency
 - 100pb⁻¹ in Run II is equivalent to 150-300pb⁻¹ in run I good
 - need about 1 year to understand b-tagging and associated background -less good...
 - Top mass and W mass measurements will be done on a scale longer than 1 year from now.
- The dilepton decay mode will be the first to be looked at:
 - moderate excess of events in run I especially at large MET (check anomalies)
 - there will be 2 parallel paths:
 - cuts similar to run I " discovery" analysis for winter 2003
 - optimization for 2fb⁻¹ (blind analysis??)

The quest for Higgs at run II

Higgs production and decay

- $gg \rightarrow H$ dominates over all mass ranges, but huge QCD backgrounds.
 - M_{μ} < 130 GeV/c² "Low mass Higgs".
 - $H \rightarrow$ bb with Associated production mode is the most promising. The double b-tagging together with the signature of the additional boson helps to discriminate from the background.

With MET>15 the Turn-on plateau is reach for MET^{offline}>30 GeV For cuts MET^{offline}>40 an efficiency increase of **1.4** can be reached in respect to run I.

Trigger strategies

0.9

Brahching Ratio 9.0 9.0

80 100 120 140 160 180 200

bb

w mass Higg

w*w

High mass Higgs

zz

Higgs Mass (GeV)

- SVT to select a sample enriched in heavy flavors
- qqbb, MET + bb

Run II extrapolations

MET + bb: In respect to run I, <u>factor 1.4 (turn-on) x 1.3.</u> (improved geometrical acceptance)

Multijets:

in respect to runl <u>factor 3</u> (double b-tag efficiency)x1.3.

 Assuming the same Signal to Background ratio as in RUN-I, the cross section limit at 95 % confidence level has been scaled as

 $Eff_{RI} / Eff_{RII} \times \sqrt{(L_{R-I} / L_{R-II})}$

Follow up on run I anomalies

Photons

S. Rolli, LaThuile March 2002

Plans and Conclusions

- First ~ 200 pb⁻¹ by end of 2002
 - Establish basic physics program, understand detector performance
 - B_s mixing; B CP violation studies; CKM matrix elements
 - First stage of new physics searches (follow up Run 1 anomalies)
- Increase integrated luminosity to > 2 fb⁻¹ by 2004
 - Precision studies of top and W physics
 - Stringent tests of the SM and interesting indirect M_{Higgs} constraints
 - Precision B physics program
 - Searches for SUSY and other new physics
- Proceed to highest attainable luminosity > 15 fb⁻¹ by 2007 +
 - Push high precision B, W and top studies to the limit
 - Follow up previous discoveries or hints
 - Complete search for low mass Higgs