

<u>B-meson rare decays</u> and CKM matrix elements <u>from Belle</u>

Henryk Palka INP, Krakow

(representing the Belle Collaboration)

XVI Rencontres de Physique de la Vallee d'Aoste, La Thuile, Aosta Valley March 3-9, 2002

1

Selected topics from many (>60) results:

Rare and radiative decays:

Mode	Relevant for:	∫Ldt	Status
ππ, Κ π, ΚΚ	φ ₃ (φ ₂), DCPV	29.1 fb ⁻¹	Preliminary
D _{CP} K⁻	φ ₃	29.1 fb ⁻¹	Preliminary
φ Κ (*)	ϕ_1 , DCPV	21.6 fb ⁻¹	Preliminary
η΄ Κ (*)	ϕ_1 , DCPV	10.4 fb ⁻¹	Published
η Κ^(*)	ϕ_1 , DCPV	21.3 fb ⁻¹	Preliminary
Κπγ, Κππγ, ργ	V_{td}/V_{ts} , DCPV	29.1 fb ⁻¹	Preliminary
K ^(*) I+I-, X _S I+I-	V_{td}/V_{ts} , DCPV	29.1 fb ⁻¹	Published

H.Palka

Semileptonic (& exclusive) decays:

Mode	Relevant for:	∫Ldt	Status
D-I+v, D*-I+v	V _{cb}	10.2 fb ⁻¹	Published
Xe⁺v	V _{cb}	5.1 fb ⁻¹	Preliminary
π ⁻ l+ν	V _{ub}	29.1 fb ⁻¹	Preliminary
D _s ⁺π⁻	V _{ub}	21.3 fb ⁻¹	Preliminary

B-decay dynamics:

D^{(*)0}h⁰ (π ⁰ ,η,ω)	Colour supp.	21.3 fb ⁻¹	Published
ΚΚπ, Κππ, ΚΚΚ	Factor., ϕ_3/ϕ_1	29.1 fb ⁻¹	Submitted
χ _{c0} Κ⁺	Factorization	29.1 fb ⁻¹	Published
p p K⁺	Dynam., DCPV	29.4 fb ⁻¹	Submitted
$p\overline{p}, \overline{\Lambda}p, \overline{\Lambda}\Lambda$	Dynam.	29.4 fb ⁻¹	Submitted

H.Palka

Background suppression

Continuum $e^+e^- \rightarrow qq$ (2jets) background dominant in most of rare decays :

 $\sigma_{BB} \cdot BF / \sigma_{qq} \sim O(10^{-5} - 10^{-6})$

- Various event shape variables : Fox-Wolfram moments, thrust... (BB : spherical, continuum: jetty)
- Angle between B thrust axis and thrust of the remaining tracks (continuum: aligned)
- B angular distribution: sin²θ (continuum: 1+acos²θ)
- Fisher discriminat to maximize signal/background separation

Identification of B

(momenta and energies in the Y(4S) rest frame)

 $E_B = 5.28 \text{ GeV and} | \vec{\mathbf{p}}_B | \approx 0.350 \text{ GeV are}$ known \Rightarrow use energy-momentum conservation:

$$\Delta E = \sum_{i} E_{i} - E_{beam} \text{ (energy difference)}$$
$$M_{bc} = \sqrt{E_{beam}^{2} - (\sum_{i} \vec{p}_{i})^{2}} \text{ (beam energy constrained mass)}$$

 K/π separation

likelihood ratio $L_{K(\pi)}$ formed from the PID system info (dE/dx, aerogel Cherenkov, TOF) $L_{K}/(L_{\pi} + L_{K}) \sim 1 \Rightarrow$ kaon, $\sim 0 \Rightarrow$ pion

(some K/ π separation also in ΔE)

$B \rightarrow \pi \pi / K \pi / K K$ (1)

Updated results (31.7M BB):

- Signal/background separation optimized for each decay mode
- Feed-across charmless decays background studied carefully \Rightarrow well controlled fit systematics ΔE calculated with π^{\pm} mass

H.Palka

$B \to \pi\pi/K\pi/KK \text{ (2)}$

DCPV via T-P interference

• measure BF's and their ratios $\rightarrow \phi_3$ (theoreticaly challenging)

Observations:

- Hierarchy: $K^+ K^- < \pi^+ \pi^- < K^+ \pi^ \rightarrow K^+ \pi^- \text{mostly penguin?}$ • Tsospin invariance (penguin dominance)
- Isospin invariance (penguin dominance sum rule): BF(K⁺ π^-) + $\tau_0 / \tau_+ \bullet$ BF(K⁰ π^+) - 2[BF(K⁰ π^0) + $\tau_0 / \tau_+ \bullet$ BF(K⁺ π^0)] = (0.08±0.9)×10⁻⁵ ($\tau_0 / \tau_+ = 1.09\pm0.04$ Belle) \rightarrow penguin dominance?

BF [10⁻⁵](UL@90% CL)

Κ ⁺ π ⁻	2.18±0.18±0.15
Κ ⁺ π ⁰	1.25±0.24±0.12
Κ ⁰ π ⁺	1.88±0.30±0.15
Κ ^ο π ^ο	0.77±0.32±0.16
$\pi^+\pi^-$	0.51±0.11±0.04
$\pi^+\pi^0$	0.70±0.22±0.08
$\pi^0\pi^0$	< 0.56
K+ K-	< 0.05
K ^o K+	< 0.38
K ^o K ^o	< 1.3

Preliminary

$\cdot \pi^0 \pi^0$ not observed yet

H.Palka

 $B^{-} \rightarrow D^{0}K^{-}(1)$

• interference of tree processes $b \rightarrow c / b \rightarrow u$ in $B^- \rightarrow D^0 K^- / \overline{D}^0 K^- \Rightarrow \phi_3$ measurement

several methods : Gronau, Wyler(91) ... Atwood, Dunietz, Soni(97)

e.g. charge asymmetries in
$$B^{\pm} \rightarrow D_{1(2)}K^{\pm}$$

CP(D₁) = +, CP(D₂) = -

However:

- 1. good PID needed to suppress $D^0\pi^{\pm}$ BF(D^0K^{\pm})/BF($D^0\pi^{\pm}$) ≈ 0.07 (Belle) \Rightarrow
- 2. Small ratio: r=A(B⁻→D⁰ K⁻)/ A(B⁻→D⁰ K⁻) ≈|V^{*}_{ub}*V_{cs}|/ |V^{*}_{ub}*V_{cs}| * [col.sup.] ≈ 0.4 * 0.25 ≈ 0.1

 \rightarrow asymmetries 'not large'

3.
$$BF(D^0 \rightarrow X_{CP}) \approx 1\%$$

 ΔE calculated with π^{\pm} mass

(Preliminary)

8

$B^{-} \rightarrow D^{0}K^{-}(2)$

- Results for 31.1 M BB:
 - $D_1 : K^+ K^-, \pi^+ \pi^ D_2 : K_S^0 \pi^0, K_S^0 \omega, K_S^0 \phi, K_S^0 \eta(\gamma \gamma), K_S^0 \eta'(\eta \pi^+ \pi^-)$
- Cabibbo suppression: BF(D⁰K⁻)/BF(D⁰ π ⁻)=0.094±0.009±0.007 BF(D₁K⁻)/BF(D₁ π ⁻)=0.125±0.036±0.010 BF(D₂K⁻)/BF(D₂ π ⁻)=0.119±0.028±0.006
- Charge asymmetries:

$$A_{CP}(D_{1}K) = +0.29^{+0.29}_{-0.24} \pm 0.05$$

$$A_{CP}(D_{2}K) = -0.22^{+0.26}_{-0.21} \pm 0.04$$

$$A_{CP} = \frac{2r * \sin \delta * \sin \varphi_{3}}{1 + r^{2} + 2r * \cos \delta * \cos \varphi_{3}}$$

$$\left(R_{1(2)} = \frac{BF(D_{1(2)}K) / BF(D_{1(2)}\pi)}{BF(D^{0}K) / BF(D^{0}\pi)}\right)$$

$$\left(\delta \rightarrow \delta + \pi \text{ for } D_{2}\right)$$

(Preliminary)

$B \to D^{(\star)_+} I^- \nu$

- Technique: 'v reconstruction' (good hermecity and calorimetry needed)
 B → XI_V: \$\vec{p}_v\$ = -\$\sum \$\vec{p}_i\$, \$P_v\$ = (|\$\vec{p}_v\$|, \$\vec{p}_v\$)
- $B \rightarrow XI_V$: $\mathbf{p}_v = -\sum \mathbf{p}_i$, $\mathbf{P}_v = (|\mathbf{p}_v|, \mathbf{p}_v)$ (just ano[†]ther 4-momentum for ΔE , M_{bc})
- Cuts to improve resolutions: no other leptons in the event, $|Q_{tot}| \le 1$

 $B \to D^{(\star)_+} I^- \nu$

The decay rate:

$$\frac{d\Gamma}{dy} = \frac{G_{F}^{2}}{48\pi^{3}} |V_{cb}|^{2} |F_{D}(y)|^{2} K_{D}(y)$$

- $K_D(y)$ known kinematic factors $K_D \propto (y^2-1)^{3/2}$, $K_{D^*} \propto (y^2-1)^{1/2}$ \rightarrow at y=1: V-A kinematics favours D*Iv
- $\begin{array}{l} \cdot \ \ F_D(y) B \rightarrow D^{(\star)} \ form \ factor \\ HQET \ relations \ simplify \ the \ F_D \\ HQS : \ M_Q \rightarrow \infty \ , \ F(1) \rightarrow 1 \\ (+ \ HQS \ breaking \ corr.) \\ QCD \ dispersion \ relations \ constrain \\ the \ shape: \ F_D = F(1)(1 \ \rho^2(y \ 1) \ + \ldots) \end{array}$

Extrapolate to y=1 to extract
$$F(1)|V_{cb}| \rightarrow F(1)|V_{cb}|$$
, ρ^2 correlated

$B \to D^{(\star)_{\text{+}}} I^{\text{-}} \nu$

	D+I-v	D*+e-v
V _{cb} F _D (1)(×10 ⁻²)	4.11±0.44±0.52	3.54±0.19±0.18
ρ²	1.12±0.22	1.35±0.17±0.19
F _D (1) used	0.98±0.07	0.913±0.042
V _{cb} (x10 ⁻²)	4.19±0.45±0.53±0.30	3.88±0.21±0.20±0.19
BF (%)	2.13±0.12±0.39	4.77±0.38±0.48

- Dominant systematics: v reconstruction modeling, tracking efficiency, $\pi_{\rm slow}$ reconstruction
- D^+I^-v less precise but valuable for F_D studies

- $B \rightarrow X e^{\scriptscriptstyle +} \nu$ tagged with $e^{\scriptscriptstyle \pm}$ on the 'other side'
- Lepton charge correlation to separate $b \to l^{\scriptscriptstyle -}$ and $b \to c \to l^{\scriptscriptstyle +}$
- $B^{0}-\overline{B}^{0}$ mixing unfolded
- BF(B \rightarrow Xev) = 10.86 ± 0.14 ± 0.47 % |V_{cb}| = (4.0 ± 0.1 ± 0.4)* 10⁻² (ISGW model)

Preliminary

H.Palka

Exclusive $B \rightarrow X_s \gamma$

- Semi-inclusive X_s γ (X_s=K + 1-4 π 's) difficult experimentally, neverthless a big success of theory: Belle (5.8 fb⁻¹) : BF(B \rightarrow X_s γ) = (3.36±0.53±0.42± 0.52)*10⁻⁴ Theory (NLO) : (3.57±0.30)*10⁻⁴ (M. Misiak 2002)
- Try to decompose X_s into exclusive 'kaonic' final states

Exclusive $B \rightarrow X_s \gamma$

	BF [10 ⁻⁵]
K* ⁰ γ	$4.96 \pm 0.67 \pm 0.45$
Κ*+ γ	$3.89 \pm 0.93 \pm 0.41$
K ₂ *0(1430)γ	$1.26 \pm 0.66 \pm 0.10$
$K^{*0}\pi^{+}\gamma$	$5.6 \pm 1.1 \pm 0.9$
Κ ⁺ρ ⁰ γ	$6.5\pm1.7\pm1.1$

Preliminary (21.3 fb⁻¹)

- A large fraction (> 60%) of BF($X_{s}\,\gamma$) accounted for
- Interesting angular analyses possible in future (photon helicity measurement)
- B $\rightarrow \rho\gamma$ not seen yet : BF($\rho\gamma$)/BF(K^{*} γ) < 0.19 (90% C.L.) (preliminary, 10.4 fb⁻¹)

- Many new decay modes have been observed in the \leq 30 fb⁻¹ data sample
- Some of them start to be interesting for $\,\phi_3\,\,,\,\phi_1\,\,$ measurements
- Measurements of $|V_{cb}|$, $|V_{ub}|$ are steadily improving
- Many new analyses are becoming possible with the large data sample