LaThuile, March 2002

Higgs at LHC Guenakh Mitselmakher

University of Florida, Gainesville

- Talk based on CMS & ATLAS studies, emphasis on recent results
- Introduction: Status of LHC, ATLAS nd CMS
- Standard Model Higgs
- Higgs in Minimal Supersymmetry (MSSM)

LHC status

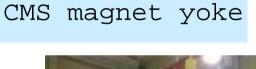
- LHC accelerator
 - Final design for dipoles
 - Pre-series tested

Schedule (optimistic)

- 04/2006 (pilot run)
- 08/2006-03/2007 10fb ⁻¹
- -> 2008 30fb ⁻¹ /year/experiment
- afterwards 100fb ⁻¹ /yr/experiment

Few months potential delay

- Rate of superconductor production (world production capacity limited)
- Funding issues


Status of general purpose experiments

- Both ATLAS and CMS optimized for Higgs detection
 - Higgs major reference process in design of both detectors
 - All signatures "detectable" : $e/\mu/\tau$, γ , jets, E_t^{miss}
- ATLAS and CMS detector subsystems are in production (except parts of Trigger and DAQ)

ATLAS and CMS started delivery of detectors to CERN

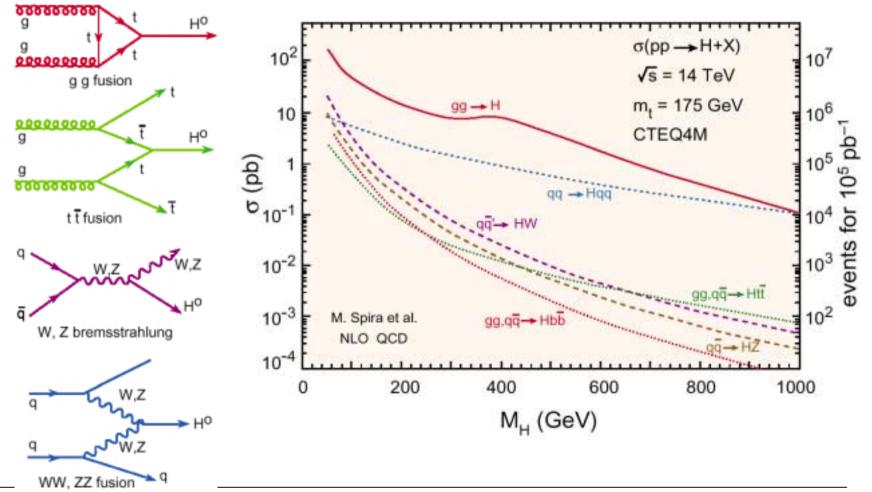
CMS HCAL

ATLAS barrel

ATLAS EM AR

On a personal note: CMS Muon system

Test installation of a Cathode Strip Chamber (CSCs in full production, >100 out of 400 produced worldwide)



Simulation of Higgs in ATLAS & CMS

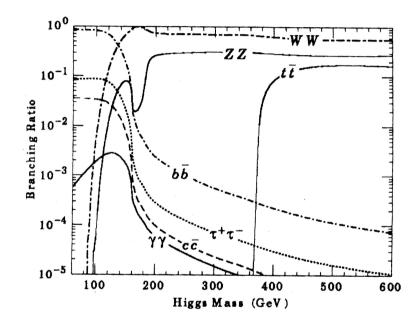
- In most cases full (GEANT) for the benchmark channels, including trigger simulations for the signal and background
 - Typically no K-factor used ($\sigma_{LO}/\sigma_{NLO} \sim 1.1$ -1.9) but if included generally makes S/ \sqrt{B} better
- Emphasis on the channels, suitable for the high luminosity
- Discovery definition: 5 σ (S/ \sqrt{B}) per experiment / channel
- Systematical errors estimated in some cases
- Simple cuts, no Neural Nets makes results more transparent, particularly when the background is not known well

SM Higgs: production Production mechanisms & cross section

10 000- 100 000 Higgses produced /year

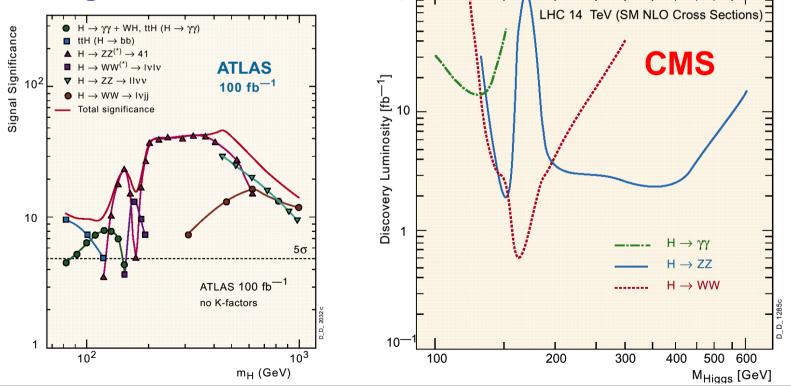
SM Higgs: final states and Branching ratios

For $m_H < 2m_Z$

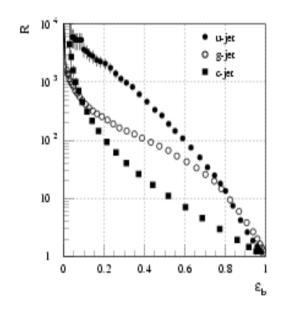

- * ttH \rightarrow lvbbjj+bb
- $H \rightarrow \gamma \gamma$ (direct & associated)
- $H \rightarrow ZZ^* \rightarrow 4I$
- $H \rightarrow WW^* \rightarrow I_V I_V$

New studies:

- $qqH \rightarrow WW^* \rightarrow IvIv$ (VBF)
- qqH $\rightarrow \tau \tau \rightarrow$ I+ τ -jet (VBF)
- qqH $\rightarrow \tau \tau \rightarrow$ I+I (VBF)

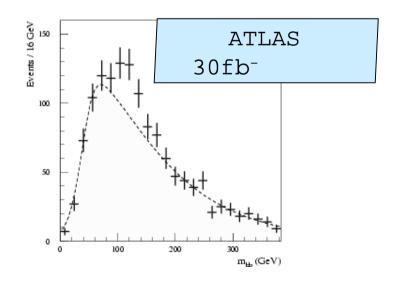

For $m_H > 2m_Z$

- $H \rightarrow ZZ \rightarrow 4I$
- $qqH \rightarrow ZZ \rightarrow IIvv$ (VBF)
- qqH \rightarrow WW \rightarrow Ivjj (VBF)
- $qqH \rightarrow WW \rightarrow l\nu l\nu$ (VBF)

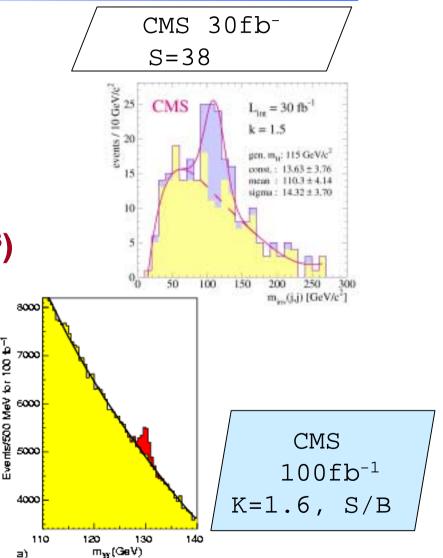

SM Higgs discovery prospects summary All masses (100 Gev – 1 Tev) covered

- in most cases a few months at low luminosity are adequate for a 5σ observation
- qq \rightarrow qqH \rightarrow qq $\tau\tau$, qqWW,qq $\gamma\gamma$ under study in low mass region

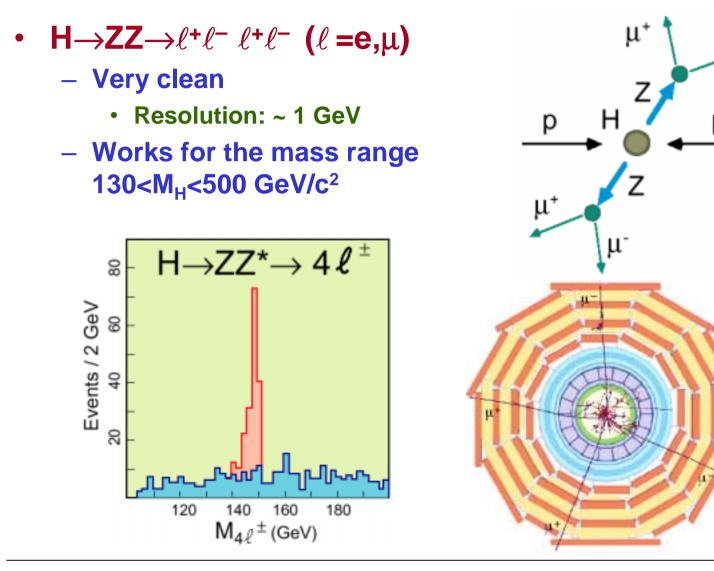
SM Higgs – low mass


• $ttH \rightarrow ttbb \rightarrow lvb+bjj+bb$

knowledge of background
 5σ for 120 GeV if 5%

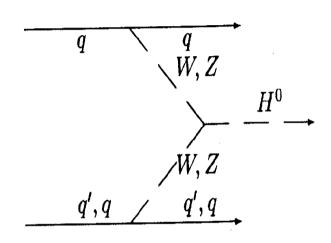

- •Complex final state :
- •Bckd reduced by 2 tops reconstruction and B-tagging
- $\cdot \Delta(m_{\rm bb})$ ~ 15%, may be
- with tracker (?)

•complementary to $\gamma\gamma$

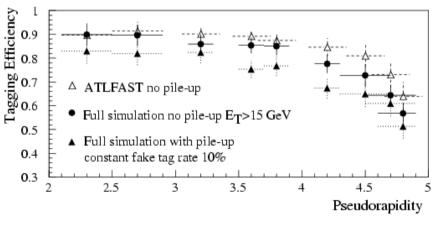


SM Higgs – low mass (cont)

- $H \rightarrow bb via ttH (cont'd)$
 - CMS study
 - Use likelihood for t decays & event kinematics
- $H \rightarrow \gamma \gamma$: decay is rare (B~10⁻³)
 - good resolution essential
 - reason for LAr/PbWO₄
 - CMS: at 100 GeV, σ≈1GeV
 - S/B ≈ 1:20


SM: Intermediate mass Higgs

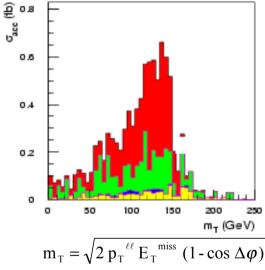
μ


Recent studies: SM Higgs -Vector Boson Fusion (VBF)

• Proposed by D. Zeppenfeld et al.

- 20% of gg-fusion
- better trigger, better signature
 - (2 forward jets, low central activity)
- measurement of couplings (H $\tau\tau$), Γ_{H}
- detection of invisible Higgs

- Forward jet tagging
 - Full simulation
 - High efficiency, low fake

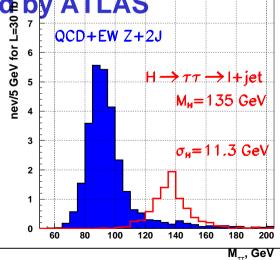


Double tag efficiencyFake double tag < 1% @

recent studies: VBF, Higgs--WW

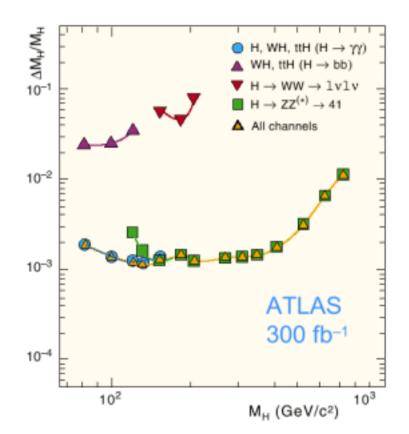
• $qqH \rightarrow qqWW \rightarrow qq Iv Iv$							
 Backgrounds: tt, WW cont. 							
– Cuts: p _T (tot) & jet veto							
m _н (Ge	eV) 1	30 1	50 1	70 ~	190		
S	10) 3	0 5	5 4	40		
S/B	0.	3 0	.9 1	.5 1	1.1		
S/√B	1.	4 5	.0 8	8.8 <i>6</i>	5.3		

ATLAS, $e\mu$, 10 $m_{\rm H} = 160$

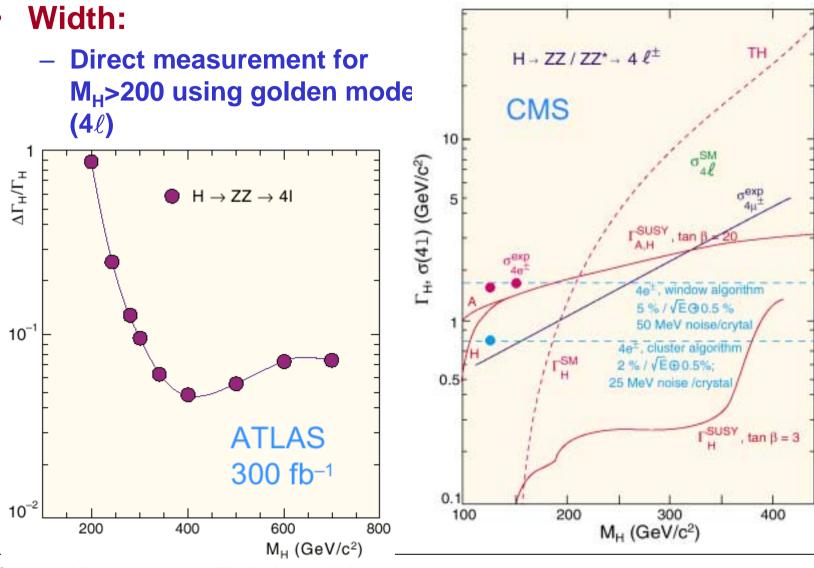


- Counting experiment @ low mass
 - 5% systematics included in B
- Good S/√B at the WW threshold: max signal & good background supression based on V-A spin correlation for WW, charged leptons emitted in the same direction

recent studies: VBF, Higgs--ττ

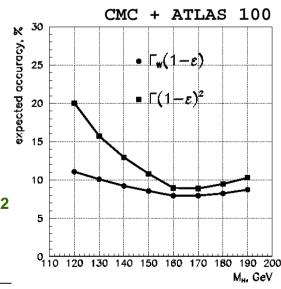

- Important for the Higgs couplings measurement
- $qqH \rightarrow qq \tau\tau \rightarrow qq+l\nu\nu+j\nu$
 - Selection and cuts similar to WW
 - τ reconstruction using collinear approximation
 - Systematic errors to be included
 - Ivv, Ivv channel has been studied by ATLAS
 - CMS fast simulation confirms parton level estimates by D.Zeppenfeld et al.

CMS, 30 fb⁻¹
$$m_{\rm H} = 135$$



SM Higgs properties: mass

- Mass measurement
 - Limited by absolute energy scale
 - leptons & photons: 0.1% (with Z calibration)
 - Jets: 1%
 - Resolutions:
 - For $\gamma\gamma$ & 4 ℓ \approx 1 GeV/c²
 - For bb $\approx 15~GeV/c^2$
 - At large masses: decreasing precision due to large $\Gamma_{\rm H}$
 - CMS \approx ATLAS



SM Higgs properties: width (for M_H>200 Gev)

SM Higgs properties: width (for low M_H,indirect measurement)

- Combine measurements of several Higgs channels in VBF and gg production: qq→qqH, gg→H
 - Can measure the following: $X_i = \Gamma_w \Gamma_i / \Gamma$ from $qq \rightarrow qqH \rightarrow qqii$
 - Here: i = γ, τ, W(W*); precision~10-30%
 - Measure also $Y_i = \Gamma_g \Gamma_i / \Gamma$ from $gg \rightarrow H \rightarrow ii$
 - Here: i = γ, W(W*), Z(Z*); precision~10-30%
 - Ratios of X_i and Y_i (~10-20%) \rightarrow couplings
 - Γ and Γ_w can be estimated from:
 - $(1-\varepsilon)\Gamma_{W} = X_{\tau}(1+y) + X_{W}(1+z) + X_{\gamma} + Y_{W}$
 - $\varepsilon = (1 (B_b + B_{\tau} + B_W + B_Z + B_g + B_{\gamma})) = B_c <<1$
 - From SM: $z = \Gamma_W / \Gamma_Z$; $y = \Gamma_b / \Gamma_\tau = 3\eta_{QCD} (m_b / m_\tau)^2$
 - $X_w = (\Gamma_w)^2 / \Gamma$ observable

SM Higgs properties – ratio of couplings

20-

- Systematic uncertainty: luminosity dominated?
- Relative couplings statistically limited

Measure	Error	M _H range	$ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
$\frac{B(H \to \gamma \gamma)}{B(H \to b\bar{b})}$	30%	80–120	$ \begin{array}{c} \bullet \\ \bullet \\$
$\frac{B(H\to\gamma\gamma)}{B(H\to ZZ^*)}$	15%	125–155	"""""""""""""""""""""""""""""""""""""
$\frac{\sigma(t\bar{t}H)}{\sigma(WH)}$	25%	80–130	
$\frac{B(H \to WW^{(*)})}{B(H \to ZZ^{(*)})}$	30%	160–180	Open symbols $: \Delta \mathcal{L} / \mathcal{L} = 10\%$ Closed symbols $: \Delta \mathcal{L} / \mathcal{L} = 5\%$
			10 ² M _H (GeV/c ²)

Problems with the SM Higgs

Quadratic divergence of its mass

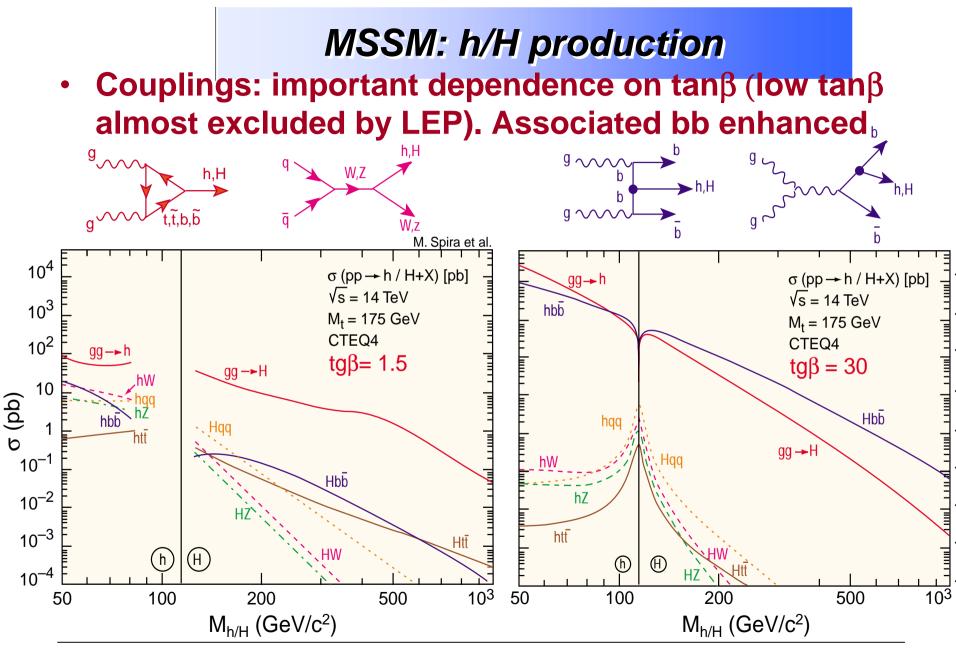
$$m^{2}(p^{2})=m_{o}^{2}+\frac{1}{p}\phi^{J=1}+-O^{J=1/2}+O^{J=0}$$

$$m^{2}(p^{2}) = m^{2}(\Lambda^{2}) + Cg^{2}\int_{p^{2}}^{\Lambda^{2}} dk^{2}$$

- $-\Lambda$ is a cutoff momentum
- In other words: why is the Higgs mass low?
- With SUSY, quadratic divergences disappear:
 - As long as M_p=M_{sp}
- SUSY requires more Higgs-like particles

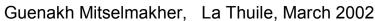
MSSM Higgses: choice of parameters

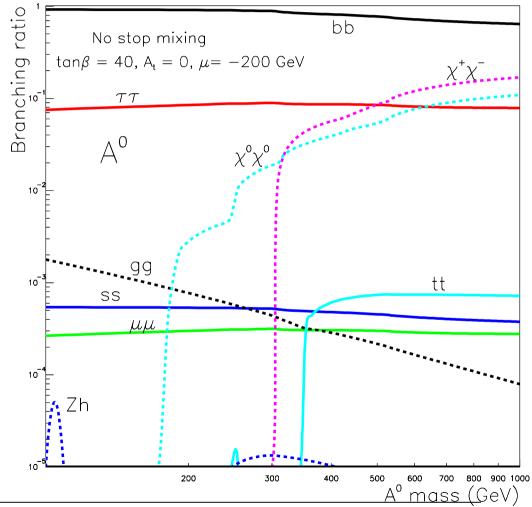

- 5 Higgses in Minimal Supersymmetry (H[±];H⁰,h⁰,A⁰)
- 2 charge, 3 neutral: 2 CP even (light h and heavy H), and one CP – odd (heavy A)
- SUSY has a lot of parameters, but only 4 are important for the Higgs sector in MSSM!
 - At tree level, all masses & couplings depend on only two parameters (usually $M_A \& tan\beta$)
 - Modifications to tree-level mainly from top loops
 - Additional parameters:


1: SUSY particle masses:

(a) M>1 TeV (i.e. no decays of the Higgses to sparticles); well-studied

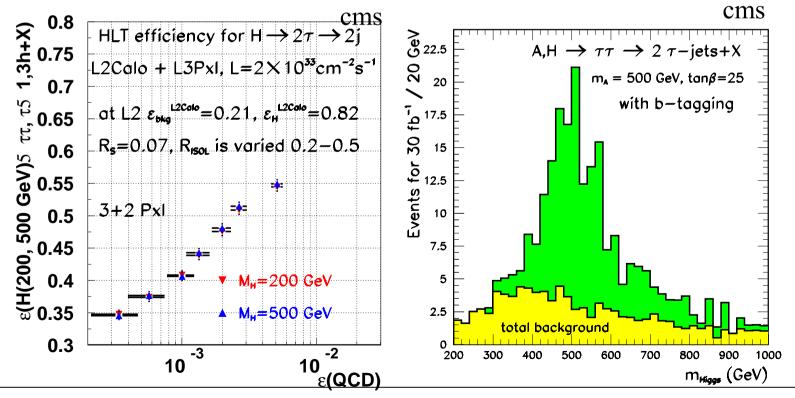
- (b) M<1 TeV (i.e. allows decays of the Higgses to sparticles); "new"
- **2: stop mixing:**


Maximal–No mixing



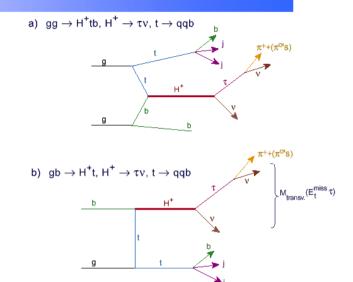
MSSM: h/H/A decays -Branching ratios

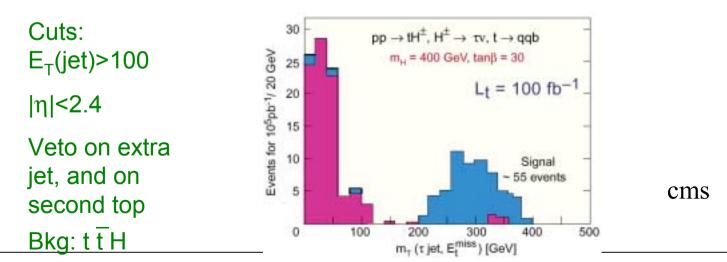
- Branching ratios for h as SM in decoupling limit
- H,A different from SM
- for A and tanβ = 40 shown
 - Decays to bb (90%) & ττ
 (8%)
 - Decays to cc, gg suppressed
 - Decays to top open at low $tan\beta$
- WW/ZZ channels suppressed for A (everywhere) and for H (at high tanβ) – lose golden modes for H, A



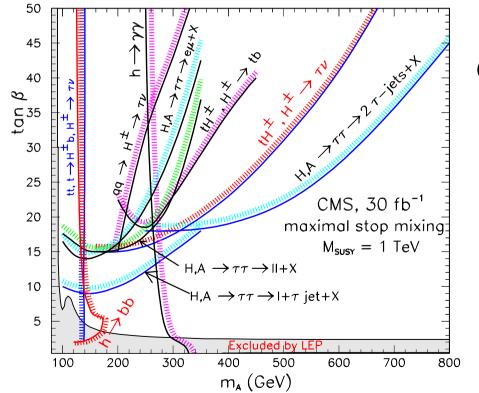
MSSM Higgses – final states Most important channels being investigated: $-h \rightarrow \gamma \gamma$, bb (in tth, Wh – recalculation from SM simulation) - h, H, $A \rightarrow \tau^+ \tau^- \rightarrow (e/\mu)^+ + hadr + E_{\tau}^{miss}$ \rightarrow e⁺ + μ^- + E_T^{miss} \searrow gg \rightarrow higgs and gg \rightarrow bbH_{susy} \rightarrow hadr⁺ + hadr⁻ + E_T^{miss} - $H^+ \rightarrow \tau^+ \nu$, (higgs from t decays, $M_H < M_{ton}$) - H⁺ $\rightarrow \tau^+ \nu$ and H⁺ \rightarrow t b (for M_H>M_{top}) $- \mathbf{H}, \mathbf{A} \to \tilde{\chi}^{0}{}_{2} \tilde{\chi}^{0}{}_{2}, \tilde{\chi}^{0}{}_{i} \tilde{\chi}^{0}{}_{j}, \tilde{\chi}^{+}{}_{i} \tilde{\chi}^{-}{}_{j} \\ - \mathbf{H}^{+} \to \tilde{\chi}^{+}{}_{2} \tilde{\chi}^{0}{}_{2}$ new and promising

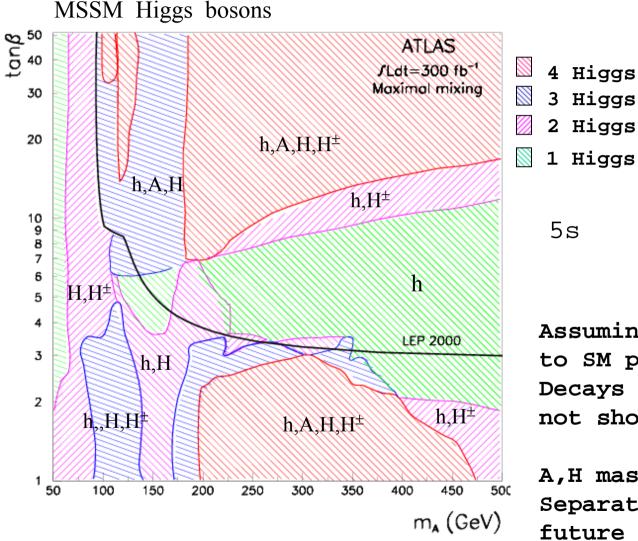
 Channels contributing at low tanβ are not considered here, since this region is practically excluded by LEP


MSSM Higgses: H,A→ττ


- Very promising modes for H,A (BR 8%)
 - $-\tau$'s identified either in hadronic or leptonic decays
 - Mass reconstruction: take lepton/jet direction to be the τ direction
 - Dedicated trigger with calo and tracker developed in CMS and ATLAS

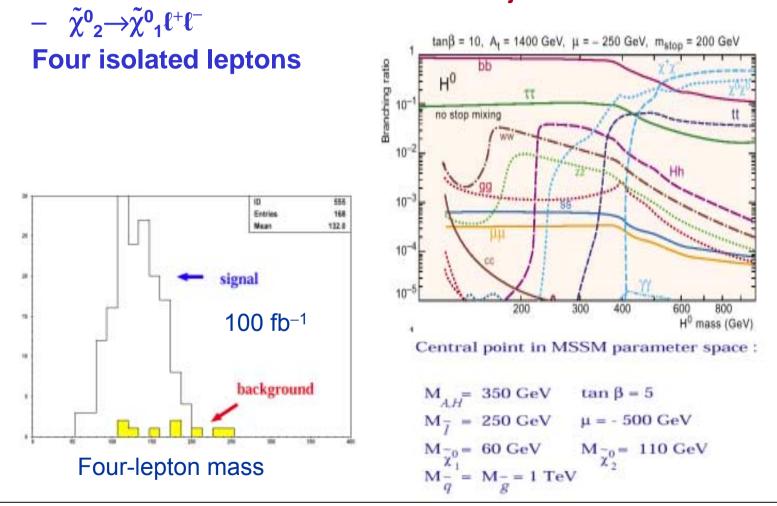
MSSM Higgses: H⁺ detection

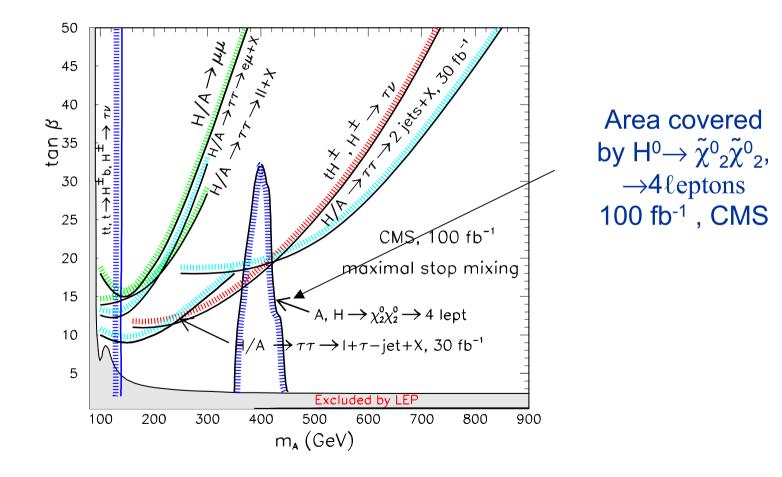

- Associated top-H⁺ production:
 - Use all-hadronic decays of the top (leave one "neutrino")
 - H decay looks like W decay \rightarrow Jacobian peak for τ -missing E_T
 - Trigger on τ -jet & missing E_{T}


Reach in M_A - tan β plane

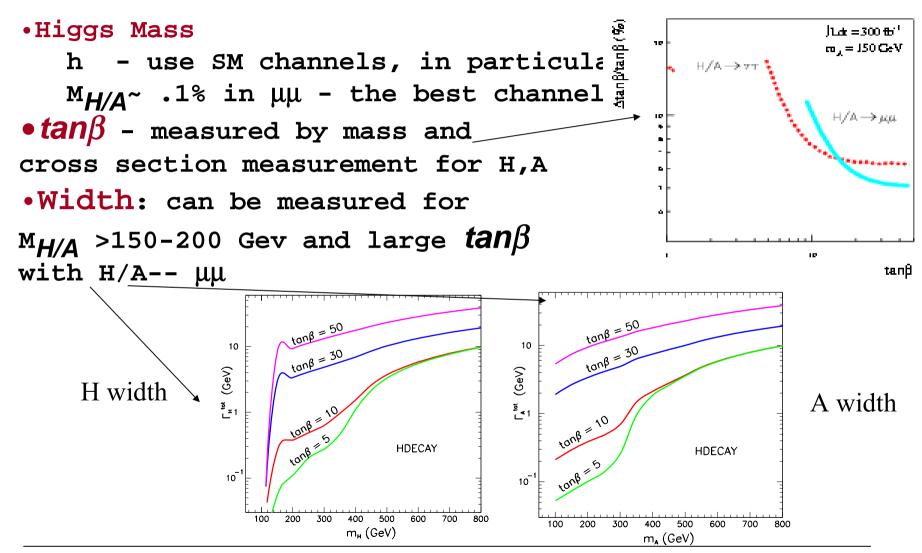
- H+ decays and $H, A \rightarrow \tau \tau$ cover substantial area
- Still large area is covered by h decays only (recalculated from SM) – difficult to separate SM and MSSM in this area
- Higgs decays to sparticles may help

CMS, 30 fb


Observability of MSSM Higgses


Assuming decays to SM particles Decays to sparticles not shown

A,H masses Separation difficult, future studies MSSM Higgses: decays into SUSY particles


• If SUSY < 1 Tev, $H^0 \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_2$, $\tilde{\chi}^+_i \tilde{\chi}^-_i$

M_A – tanβ reach (including Higgs decays into sparticles)

MSSM Higgs properties

On-going and future studies

- More simulations of the decays into sparticles
- H spin (e.g. using angular correlations in 4l decays)
- A,H separation (mass difference –only al low masses, to use CP?)
- CP-violation, CP-mixing (different Higgs couplings to W/Z bosons
- CP accessible at "medium" tan β with high statistics (?)
 - SUSY: complex breaking parameters in the Stop/Sbottom/Gluino sector ? Then:
 - Mixing between 3 neutral states is possible
 - "h, H, A" \rightarrow H₁, H₂, H₃ mixed CP states
 - Higgs couplings to W/Z and fermions differ
 - CP violation study of Higgs sector may be relevant to the mechanism for EW Baryogenesis
- Higgs self couplings (experiments may have to wait LC):
 - SM: tens of events with 10 years of LHC in WWWW (ATLAS, preliminary) ...hard
 - MSSM H-hh-bbbb....

Summary

- SM Higgs
 - Discovery over full mass range with > 10fb⁻¹
 - LHC/Tevatron competition in ~ 2007 ?
- MSSM
 - At least one Higgs can be discovered experimentally anywhere in the MSSM parameter space
 - In large area difficult to distinguish between SM and MSSM, Higgs decays to sparticles may help – studies continue
- Higgs properties measurements
 - Masses, width, couplings, tan β can be measured in broad area of parameters
 - Interesting studies remain to be done...
- Thanks to many CMS and ATLAS colleagues, who performed the studies, and in particular to A. Nikitenko, K.Lassila-Perini, D. Denegri, F.Gianotti, L.Poggioli, P.Sphicas and K.Jakobs for providing material and discussions