Tevatron Run I QCD Results

Don Lincoln

QuantumStudy of the forceChromogoverning the behaviorDynamicsof quarks and gluons

- Inclusive Jet Cross-Section (Cone Algorithm)
- Measurement of α_s
- Inclusive Jet Cross-Section (k_T Algorithm)
- Event shape variables <u>New</u>
- Jet structure/quark-gluon separation

Cone Definition of Jets

Observable remnant of parton-parton hard scatter

Centroid found with 4-vector addition

 $E_{iet} = S E_i$ $E_{T}^{jet} = E_{iet} \sin q_{iet}$

(CDF's Definition)

1.3R 2R

 Cone Definition ► R=0.7 in η–φ

- Merging and splitting of $h = -\ln[\tan(q/2)]$ jets required if they share energy
- R_{sep} required to compare theoretical predictions Sloop ned for to data

(R_{sep} is the minimum separation of 2 partons to be considered distinct jets)

> f Don Lincoln f La Thuile 2002

more tons agoint the

State of the Art 1995 (The Controversy)

High p_T excess is exciting prospect

Controversy Resolved(?)

More modern pdf's (esp. CTEQ4M and CTEQ4HJ) ameliorate the disagreement

$\mathbf{\alpha}_{s} \text{ from Inclusive Jet}$ $\frac{ds}{dE_{T}} = \mathbf{a}_{s}^{2}(\mathbf{m}_{R})X^{(0)}(\mathbf{m}_{R},\mathbf{m}_{F})\times [1 + \mathbf{a}_{s}(\mathbf{m}_{R})k_{1}(\mathbf{m}_{R},\mathbf{m}_{F})]$

- $a_s^2 X^{(0)}$ is LO prediction
- $a_s^{3}X^{(0)}k_1$ is NLO prediction
- $X^{(0)}$ and k_1 determined from JETRAD
- MS scheme used (CTEQ4M)
- Jet cone algorithm used with $R_{sep} = 1.3$
- \boldsymbol{a}_{s} determined in 33 E_{T} bins

PRL 88 042001 (2002)

Ellis-Soper PRD 48 3160

$$d_{ij} = \min(E_{T,i}^2, E_{T,j}^2) \frac{\Delta \mathbf{R}_{ij}}{D^2}$$

$d_{ii} = E_{T,i}^2$ (b) (a)Beam Beam (c)(d)Beam Beam (e)(f)Beam Beam

ΔR_{ii}^{2} K_T Definition of Jets

 $\min(d_{ii}, d_{ij}) = d_{ij} \Rightarrow \text{Merge}$

 $\min(d_{ii}, d_{ij}) = d_{ii} \Longrightarrow \text{Jet}$

• K_T Definition

cells/clusters are combined if their relative k_T^2 is "small" (relative transverse momentum) (D=1.0 or 0.5 is a scaling parameter)

- Infrared safe
- Same definition for partons, Monte Carlo and data
- Allows subjet definitions

Inclusive Cross Section Using K_T Algorithm

|η| < 0.5 D = 1.0

- Predictions IR and UV safe
- Merging behavior well-defined for both experiment and theory

Phys. Lett. B 525 211 (2002)

Comparison with Theory

- Normalization differs by 20% or more
- No significant deviations of predictions from data, when correlated systematic errors are included
- When first 4 data points ignored, probabilities are 60-80%

PDF	c/dof	Prob
MRST	1.12	31
MRSTg ↑	1.38	10
MRSTg↓	1.17	25
CTEQ3M	1.56	4
CTEQ4M	1.30	15
CTEQ4HJ	1.13	29

Transverse 'Thrust' at DÆ Using K_T jets

Event shapes used at e⁺e⁻ and ep to test QCD developments like resummation calculations and nonperturbative corrections

Non-perturbative corrections: of the order of 1/Q. Related to hadronization effects.

Resummations: needed at small values of the shape variable where fixed-order perturbative calculations are expected to fail. Traditional variable (thrust) not suitable for hadron-collider environment. (Lorentz boost invariance)

Transverse Thrust:

 $T_2^T = \max_{\hat{n}} \frac{\sum_i \left| \vec{p}_{t_i} \cdot \hat{n} \right|}{\sum_i \left| \vec{p}_{t_i} \right|}$ **T=1** 2 partons in final state T=[2/3,1](LO)**3 partons in final state** T=[1/2,1](N...NLO) N partons in final state f Don Lincoln f La Thuile 2002

Dijet Transverse Thrust cross section

Run Ib (1994-1996),
$$\sqrt{s} = 1.8 \, TeV$$
, $\int L = 88 \, pb^{-1}$

 K_T algorithm (parameter D = 1)

Event Selection:

- Vertex cut (| z | < 50 cm, *e* ~ 90 %)
- Jet quality cuts (*e* ~ 99.5 %)
 (0.05 < *EMF* < 0.95, *CHF* < 0.4)
- Trigger-specific leading jet p_T cuts
- Cut on missing $E_T (\not\!\!E_T / p_T^{lj} < 0.7)$
- $|\eta_1| < 1$, $|\eta_2| < 1$, $|\eta_3| < 3$ (if present)

Non-Traditional Aspects

Use only leading two jets to calculate T_2^T

Bin in HT₃

Compromise on measuring hard scale and insensitivity to noise.

• Bin in $HT_3 = \sum_{i=1}^{3} E_{T,i}^{jet}$

Jet production rate α_s^3 is NLO

Event shape observables α_s^3 is LO

Dijet Transverse Thrust cross section

CTEQ4HJ,
$$\mu_F = \mu_R = P_T^{\text{max}}/2$$

Only statistical errors included

N

 $\Delta T_2^T L e$

 $d\mathbf{S}$

Systematic error work underway

Deviations at High (1-T) \rightarrow higher order Low (1-T) \rightarrow resummation

Preprint forthcoming

Quark/Gluon Separation

- Quark/gluon separation interesting
 - QCD/fragmentation studies
 - Useful for enhancing quark-only final states (c.f. tt → all jets)
 - Find quark (gluon) enhanced samples.

$$f_g^{630} \sim 0.46$$

 $f_g^{1800} \sim 0.66$

$$\begin{array}{l} x_{630} \sim 0.09 - 0.16 \\ x_{1800} \sim 0.03 - 0.055 \end{array}$$

DÆ Subjet Multiplicity Using K_T Algorithm

PRD 65 052008 (2002)

DÆ Subjet Multiplicity Using K_T Algorithm

$$R = 1.84 \pm 0.15$$
 (stat) $^{+0.22}_{-0.16}$ (syst)

HERWIG prediction = 1.91 ± 0.16 (stat)

Largest uncertainty comes from the gluon fractions in the PDFs

Summary #1

- CDF's new inclusive jet analysis does not show the dramatic high p_T excess of earlier analyses and highlights need for better high-*x* gluon pdfs
- CDF has recently published a nice analysis measuring α_s from 50-250 GeV and evolved it to M_z , where it agrees nicely with the world average
 - Analysis does show sensitivity to the high p_{\perp} excess described above

Summary #2

- DØ has recently completed an extensive program using the k_T jet-finding algorithm
 - Inclusive jet cross-section
 - Reasonable agreement with NLO calculations
 - Prefers CTEQ4HJ and MRST pdfs
 - k_{\perp} jets contain more energy than similar cone jets
 - Event shape analysis (using transverse thrust)
 - Very preliminary results shown here. Preprint available soon.
 - Jet structure analysis
 - Good agreement with HERWIG
 - Approximately twice as much radiation from gluon jets as from quark jets.

www-d0.fnal.gov/~lucifer/PowerPoint/LaThuile2002.ppt

DÆ Subjet Multiplicity Using K_T Algorithm

- Perturbative and resummed calculations predict that gluon jets have higher subjet multiplicity than quark jets, on average.
- Linear Combination:

Gluon Jet Fraction

Quark Jet Fraction

$$f_g^{630} = 0.33$$

 $f_g^{1800} = 0.59$

PRD 65 052008 (2002)

f Don Lincoln f La Thuile 2002

DÆ Subjet Multiplicity Using K_T Algorithm • Assume M_g , M_O Normalized number of jets 0.0 0.1 0.2 0.3 0.3 0.3 independent of **Ö**s HERWIG + full detector simulation $M_{g} = \frac{(1 - f_{630})M_{1800} - (1 - f_{1800})M_{630}}{f_{1800} - f_{630}}$ (a) Gluon jets $M_{q} = \frac{f_{1800}M_{630} - f_{630}M_{1800}}{f_{1800} - f_{630}}$ Extracted Tagged, 1800 GeV Tagged, 630 GeV (b) Quark jets Uncorrected 0.1 4

0

2

PRD 65 052008 (2002)

f Don Lincoln f La Thuile 2002

8

6

Subjet multiplicity M