

We Have Great Opportunities Ahead

***** We are on the verge of important discoveries

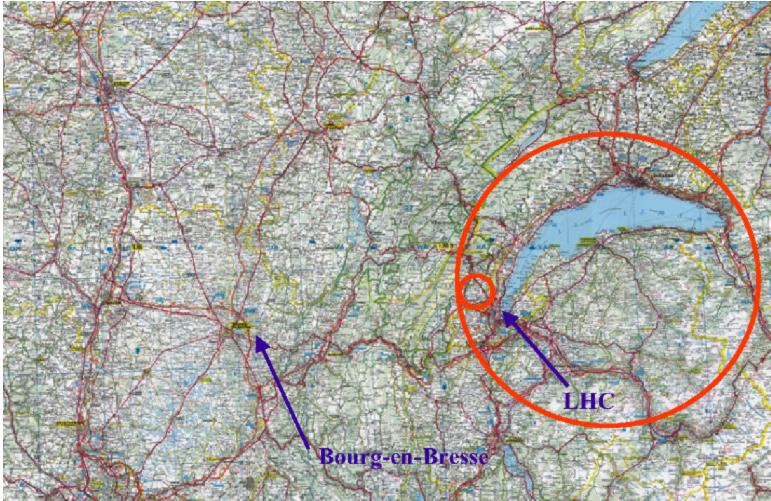
- o The Standard Model has been very successful and we are getting ready for the inevitable next step.
- There are many hints that great physics is just over the horizon — understanding EWSB, neutrino mass, dark energy, dark matter and more — a time similar to the early 20th century.

Possibilities for the new HEP tools are excellent

- o Run II is starting (with some difficulty)
- o LHC is being built (with the usual problems)
- A linear collider is being planned (and might be started in 5 to 10 yrs.)

<u>The Long-Range Plan</u>

Eventually HEP must go to a higher energy scale


o The only sure way to get there is with a proton collider – a VLHC.

In principle a VLHC could be built in many places, but the best combination of infrastructure, space, geology and resources is in the U.S., at Fermilab.

- An incomplete plan now could delay the step to higher energy for many years or even cancel it entirely.
 - o The plan we make now must look beyond linear collider
 - o We need to pursue this plan during the era of the LHC. These things take time.
 - o It will require worldwide cooperation to collect the economic and political resources necessary to build a VLHC at 100 to 200 TeV.

The VLHC at CERN?

LaThuile The VLHC in the LHC ERA

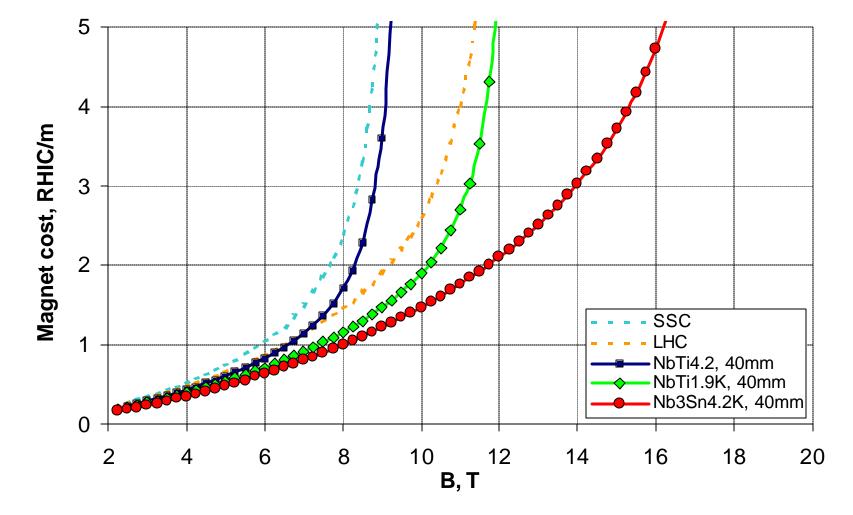
A Complete Plan Now

If and when we build the VLHC may depend on what happens to the linear collider

- **o** Possibility 1: A linear collider is built in the U.S.
- o Possibility 2: A linear collider is built, but not in the U.S.
- o Possibility 3: No linear collider is built
- The path to higher energy with a VLHC is dependent on these choices
 - Therefore, the plan has to be complete. It has to include steps beyond the linear collider.

A Linear Collider Is Built In the U.S.

There may be no VLHC for many years


The U.S. is unlikely to start a LC soon, and even less likely to invest \$5 billion in a LC and then invest another \$5 billion in a VLHC.

In this case, the only path to higher energy is to increase the LHC energy

- 0 17 T magnets gets a factor of ~2 in energy
- o Requires a new higher-energy injector
- **o** Synchrotron radiation power is proportional to E³B
- o Magnet costs run away at high field

Very risky and very costly for very little gain

<u>A Linear Collider Is Built — But Not In the U.S.</u>

- The U.S. will be a major player, we hope, in the Linear Collider project and physics
- There will be resources available (and the desire) for VLHC construction in the U.S.
- There should be a vigorous magnet and machine R&D program in the U.S. in parallel with LC construction.
- It takes longer than you think to develop the components of a cutting-edge collider, and the price for not completing the R&D early is severe.

How Long Does It Take?

Collider	В	Magnet R&D Start	Magnet Prod Start	Magnet R&D Duration (yrs)	Magnet Prod Completed
Tevatron	4.4	1973	1980	7	1983
HERA	5	1977	1987	7	1990
SSC	7	1982	Est. 1995 #	Est. 13 #	#
RHIC	4	1986	1994	8	1996
LHC	9	1986	2002	16	2007 (?)
# Cancelled in 1993. Production never started. More than 20 successful					
prototypes were built at FNAL & BNL by 1992.					

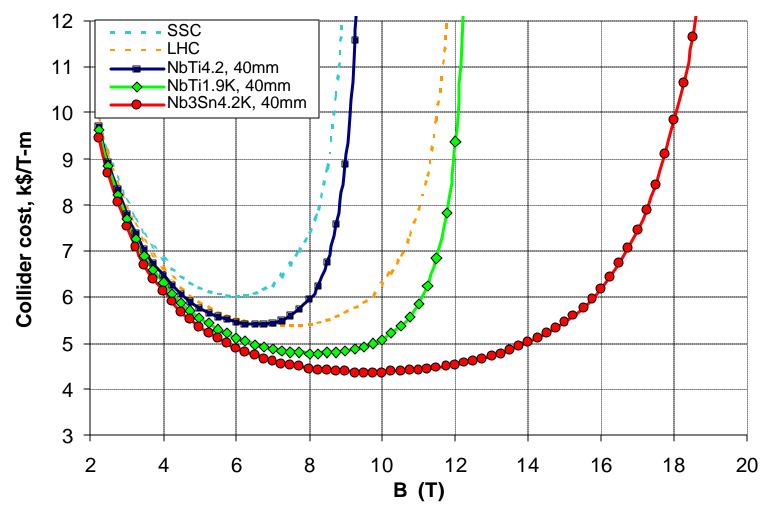
<u>A Linear Collider Is Built — But Not In the U.S.</u>

- We will need to decide early what sort of VLHC energy, size, magnet, staging
 - Our model is based on a staged design with the ultimate energy of 200 TeV (CM), but there are many options

Hopefully, the LHC results will tell us the energy

- The R&D emphasis for a very-high-energy VLHC is different from the R&D for a Super-LHC
 - For technical and cost reasons, lower field and larger circumference is optimum for a very-high-energy collider.

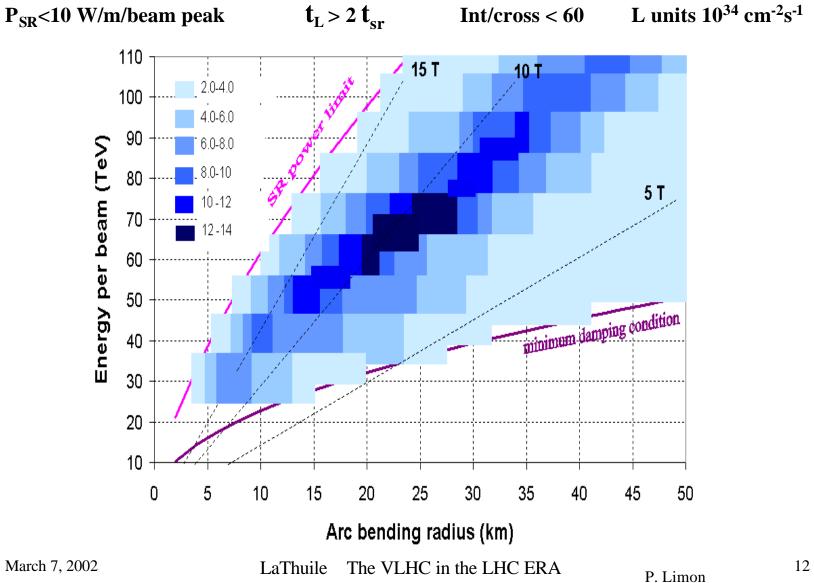
Magnets for a VLHC


High magnetic field is not optimum

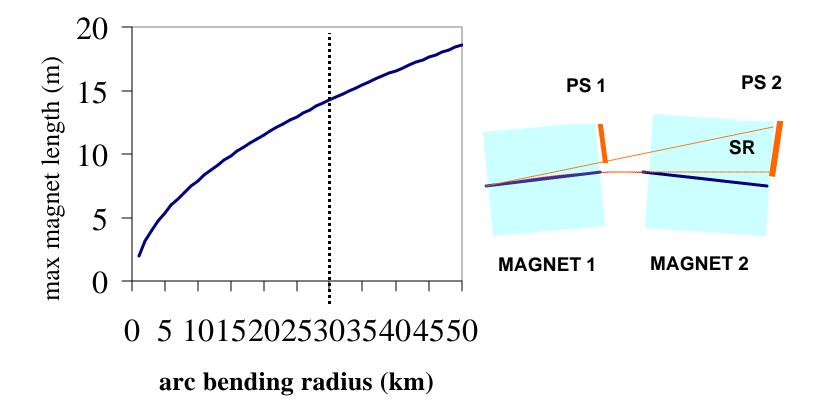
- o Colliders with high-field magnets cost more.
- O Synchrotron radiation limits the energy and luminosity for high-field colliders.
- Large-circumference rings allow "photon stops," which removes most of the limits due to synchrotron radiation.
- Even at "merely" 10 T-12 T the development will be difficult, because the materials are unfamiliar.

P. Limon

VLHC Cost based on SSC cost distribution



LaThuile The VLHC in the LHC ERA


P. Limon

11

While We Wait for an LC Decision

*** VLHC R&D continues**

- The issues are magnets, magnets and magnets
 - And studies of tunneling, synchrotron radiation & accelerator physics.

✤ In the U.S. there are still vigorous SC magnet programs.

- ✤ A DOE-funded program to help upgrade and improve LHC performance will (we hope) begin soon in the U.S., and will greatly strengthen VLHC R&D.
 - The main part of the program will be development of large-aperture strong quadrupoles using Nb3Sn.

Conclusions

- The most important requirement for the future instruments of HEP is worldwide cooperation and a global plan.
- The global plan for the instruments of particle physics must go beyond the linear collider and include a long-range vision.
 - This is similar to the NASA Strategy, in which the goals are truly large and visionary, and the instruments are missions along the way.
- The parameters, schedule and R&D for a VLHC will depend the timing and location of a linear collider in addition to results from the LHC. The global plan should recognize these couplings.
- If we ever want to build a VLHC we need to have a vigorous R&D program now, because magnet development takes a long time, and the penalty for late development is severe.

15