The Sudbury Neutrino Observatory

First Results

Kate Frame (University of Oxford) for the SNO Collaboration

March 4th, 2002

XVI Rencontres de Physique de La Vallée d'Aoste

the second second second

SNO Collaboration

Carleton University Queen's University University of Guelph Laurentian University University of British Columbia TRIUMF University of Pennsylvania Los Alamos National Laboratory Lawrence Berkeley National Laboratory University of Washington Brookhaven National Laboratory University of California, Irvine Birkbeck College, London University of Oxford University of Sussex/RAL

The SNO Detector

2 km to surface 10^{11} m to Sun

1700 tonnes H₂O ~**9500 PMTs** with concentrators

5300 tonnes H₂O

n Reactions in SNO

V_x

q

 ν_{e}

d

(n)

 Z^0

$$\mathbf{cc} \, \mathbf{n}_e^{} + \mathbf{d} \Rightarrow \mathbf{p} + \mathbf{p} + \mathbf{e}$$

-Good measurement of v_e energy spectrum -Weak directional sensitivity $\propto 1-1/3\cos(\theta)$ - v_e only.

NC
$$\boldsymbol{n}_x + d \Rightarrow p + n + \boldsymbol{n}_x$$

-Measure total ⁸B v flux from the sun. - Equal cross section for all v types - E_{γ} =6.3MeV (D₂O) $E_{\Sigma\gamma}$ =8.6MeV (³⁶Cl)

-Low Statistics

-All n types but enhanced sensitivity to v_e -Strong directional sensitivity

 $\nu_{\rm x}$

q

e

11

(p)

W+/-

(or ³⁶Cl)

Signals in SNO

Charged-current spectrum is more sensitive to shape distortions!

Charged-Current to Neutral Current ratio is a direct signature for oscillations

Evidence for Neutrino Oscillations

CC/ES Could also show significant effects!

$$\frac{\text{CC}}{\text{ES}} = \frac{\boldsymbol{n}_{\text{e}}}{\boldsymbol{n}_{\text{e}} + 0.154} (\boldsymbol{n}_{\text{m}} + \boldsymbol{n}_{t})$$

Signals in SNO

8

SNO Calibrations

Electronics Calibration Electronic pulsers

Optical Calibration

Pulsed laser ~2ns (337, 365, 386, 420, 500 and 620 nm) →Attenuation, Reflection, Scattering, Relative QE

Energy Calibration

- ¹⁶N \rightarrow 6.13 MeV γ 's
- p,T \rightarrow 19.8 MeV γ 's
- neutrons \rightarrow 6.25 MeV γ 's
- ⁸Li \rightarrow β spectrum endpoint

Low Energy Backgrounds Encapsulated Th and U sources

The enemy.....

 β s and γ s from decays in these chains interfere with our signals at low energies

And worse, γs over 2.2 MeV cause $d + \gamma \rightarrow n + p$

Design called for: $D_2O < 10^{-15}$ gm/gm U/Th $H_2O < 10^{-14}$ gm/gm U/Th Acrylic < 10^{-12} gm/gm U/Th

SNO Water Assays

Targets are set to reduce β - γ events reconstructing inside 6m

Targets for D₂O represent a 5% background from $d+\gamma \rightarrow n+p$

SNO Energy Calibrations

12

Raw Nhit Spectrum

13

Instrumental Background Cuts

How do we know this worked?

L.8

0.2

0.1

0.2

Signal loss measured with calibration sources

Contamination measured with independent cuts

0.5

High level parameters performance

0.9

Instrumental background

¹⁶N calibration source

Selected events

Solar Neutrino Spectrum

Radial Distribution

Nhit \geq 65 (no neutrons, no low energy backgrounds)

Edge of AV is quite sharp.

 \rightarrow Events from D₂O clearly identified.

Fiducial Volume

SNO cosq_o distribution

ES: strongly peaked CC: 1-1/3cosq_o Neutrons: isotropic

Electron Angle with respect to the direction from the Sun

Signal Extraction

Signal Extraction Results

Data resolved into CC, ES, neutron components with Monte Carlo pdfs of T_{eff} , $\cos\theta_{sun}$, $(R/R_{AV})^3$ With the hypothesis of no neutrino oscillations

CC ES Tail of Neutrons 975.4 ± 39.7 events 106.1 \pm 15.2 events 87.5 \pm 24.7 events

240.9 live-days between 11/99-1/01

No statistically significant differences between Blind and Open data sets (75 days/166 days)

Systematic Uncertainties

N(HE γ events): <10 events (68% CL)

	Source	CC (%)	ES (%)
->	Energy scale	+6.1, -5.2	+5.4, -3.5
	Energy resolution	±0.5	±0.3
	Energy scale non-linearity	±0.5	±0.4
_	Vertex accuracy	±3.1	±3.3
	Vertex resolution	±0.7	±0.4
	Angular resolution	±0.5	±2.2
+	High energy g	+0, -0.8	+0, -1.9
	Low energy background	0.0 - 0.2	0.0 - 0.2
	Instrumental background	+0.0, -0.2	+0.0, -0.5
	Trigger efficiency	0.0	0.0
	Live Time	±0.1	±0.1
	Cut acceptance	+0.7, -0.6	+0.7, -0.6
	Earth orbit eccentricity	±0.2	±0.2
	¹⁷ O, ¹⁸ O	0.0	0.0
	Experimental uncertainty	+7.0, -6.2	+6.8, -5.7
	Cross section	3.0	3.0
	Solar model	+20, -16	+20, -16

SNO energy (CC) spectrum / ⁸B spectrum No evidence for shape distortion

Data points derived by fitting each energy bin independently Monte Carlo of undistorted ⁸B spectrum normalized to the data Data/BP2001 (⁸B only) 70 50 50 50 50 50 0.3 0.2 Ratio to BP2001: 0.347 ± 0.029 0.1 0 10 8 12 9 11 13 Kinetic energy (MeV)

(Adding syst. bin by bin in quadrature give c^2 of ~12 for 11 D.O.F.)

Solar Neutrino Fluxes > Absolute fluxes (x 10⁶ cm⁻² s⁻¹): SNO:

 $\mathbf{F}^{\text{CC}}(^{8}\text{B}) = 1.75 \pm 0.07 \quad \begin{array}{c} +0.12 \\ -0.11 \end{array} \quad \pm 0.05 \\ (\text{stat}) \quad (\text{sys.}) \quad (\text{theory}) \end{array}$ $\mathbf{F}^{\text{ES}}(^{8}\text{B}) = 2.39 \pm 0.34 \quad \begin{array}{c} +0.16 \\ -0.14 \\ (\text{stat}) \quad (\text{sys.}) \end{array}$

Super-K* $\mathbf{F}^{\text{ES}}(^{8}\text{B}) = 2.32 \pm 0.03 + 0.08 - 0.07$ (stat) (sys.)

*S. Fukuda, et al., hep-ex/0103032

"Flux" Differences

- CC at SNO vs ES at SNO • Φ_{SK}^{ES} - $\Phi_{SNO}^{CC} = 0.64 \pm 0.40 \implies 1.6\sigma$ effect
- CC at SNO vs ES at SK • $\Phi_{SK}^{ES} - \Phi_{SNO}^{CC} = 0.57 \pm 0.17 \implies 3.35\sigma \text{ effect}$

The hypothesis that this is a downward statistical fluctuation is ruled out at 99.96%

\mathbf{F}_{mt} vs. \mathbf{F}_{e}

 Φ_{SSM} (⁸B) = 5.05 $^{+1.01}_{-0.81} \times 10^6 \,\text{cm}^{-2}\text{s}^{-1}$

The Standard Solar Models are correct

Krastev and Smirnov hep-ph/0108177

Fogli,Lisi,Montanino,Palazzo hep-ph/0106247 26

SNO Schedule

 Now- Summer 2002 Salt data Summer 2002- Autumn 2002 Pure D₂O run • January 2003 - 2005 Neutral Current detectors • Summer 2005 **SN-2005A**

Conclusions

- The SNO detector is working and taking beautiful data.
- The CC rate measured in SNO is incompatible with the Super-K ES rate.
- Chis is strong evidence (>99.8% c.l.) for the appearance of mor t neutrinos from the Sun.
- Sterile and Just-So² oscillations are excluded by these results at >99.8% c.l.
- The ⁸B n flux from the Sun is measured to be in agreement with the predictions of Standard Solar Models.

Outlook

- These results are just the first of what SNO will produce.
- The conclusions listed on the preceeding slide are systematics dominated. They will be severely tested by new measurements:
 - \odot NC measurements in pure D₂O
 - \bigcirc Day/night in pure D₂O
- O The same measurements with NaCl added
- © The same measurements with the NCDs
- hep ν, μ, anti-ν, seasonal variations, and much more . . .
- It will be a very exciting time!