

BaBar Results on CP Violation in the B Sector

Francesco Forti INFN - Pisa

On Behalf of the BaBar Collaboration

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, March 3-9 2002

CP Violation in the Standard Model

CP violation arises from single phase in CKM matrix

Unitarity of V implies eg. $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ \rightarrow represented as 'unitarity triangle' in complex plane

Ú

from Interference of Mixing and Decay

A kind of CP violation results from interference between decays with and without mixing

$$\frac{P_{f_{CP}}}{P} = \frac{q}{p} \cdot \frac{A_{f_{CP}}}{A_{f_{CP}}}$$
$$= \frac{P_{f_{CP}}}{P} e^{-2i\varphi_{CP}}$$

$$\lambda_{f_{CP}} \neq \pm 1 \implies \operatorname{Prob}(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}) \neq \operatorname{Prob}(B_{phys}^{0}(t) \rightarrow f_{CP})$$

Time-dependent CP asymmetry:

$$\begin{split} A_{f_{CP}}(t) = & \frac{\Gamma(\bar{B}^0_{phys}(t) \to f_{CP}) - \Gamma(B^0_{phys}(t) \to f_{CP})}{\Gamma(\bar{B}^0_{phys}(t) \to f_{CP}) + \Gamma(B^0_{phys}(t) \to f_{CP})} \\ = & C_{f_{CP}} \cos (\Delta m_d t) + S_{f_{CP}} \sin (\Delta m_d t) \end{split}$$

$$C_{f_{CP}} = \frac{|\boldsymbol{I}_{f_{CP}}|^2 - 1}{|\boldsymbol{I}_{f_{CP}}|^2 + 1}$$
$$S_{f_{CP}} = \frac{2 \operatorname{Im} \boldsymbol{I}_{f_{CP}}}{1 + |\boldsymbol{I}_{f_{CP}}|^2}$$

March 3-9, 2002

F. Forti - La Thuile 2002

March 3-9, 2002

F. Forti - La Thuile 2002

PEP-II Asymmetric B Factory

- 9 GeV e⁻ on 3.1 GeV e⁺ : $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$
- U(4S) boost in lab frame : bg = 0.55

Ú

SLAC B Factory Performance

- PEP-II top luminosity: 4.51 x 10³³cm⁻²s⁻¹ (design 3.0 x 10³³)
- Top recorded L/24h: 303.4 pb⁻¹
- BABAR logging efficiency: > 96%
- Analysis Data samples
 - Run1 : 20.7 /fb
 - Run2a : 9.0 /fb
 - Run2b : 26.7 /fb
 - Total : 56.4 /fb

PEP-II delivered : 75.25 fb⁻¹ BABAR recorded : 71.48 fb⁻¹ (incl.7.85 fb⁻¹ off peak)

The BABAR Detector

SVT: 97% efficiency, 15 μm z hit resolution (inner layers, perp. tracks) SVT+DCH:σ(p_T)/p_T = 0.13 % [•] p_T + 0.45 %, σ(z₀) = 65 @ 1 GeV/c DI RC: K-π separation 4.2 σ @ 3.0 GeV/c → 2.5 σ @ 4.0 GeV/c EMC: $\sigma_{E}/E = 2.3 \% \cdot E^{-1/4} \text{ Å } 1.9 \%$

Analysis strategy

Ú

Vertex and Δt Reconstruction

- High efficiency (93%) through inclusion of 1-prong tags
- Average Δz resolution is 180 μ m (< $|\Delta z|$ > = $\beta \gamma c \tau$ = 260 μ m) corresponding to a Δt resolution of 0.6 ps.
- Δt resolution function measured from data (B_{flav} sample) March 3-9, 2002 F. Forti - La Thuile 2002

9

B Flavor Tagging

С

Hierarchical tagging categories:

- Lepton charge of lepton
- Kaon net charge of kaon
- NT1] exploit information from
- NT2 \int soft π , unidentified |

Large B_{flav} sample provide tagging performance measurement:

h

Tagging category	Efficiency ε (%)	Mistag fraction w (%)	$\overline{B^0/B^0}$ diff. Δw (%)	$Q = \varepsilon (1-2w)^2$ (%)
Lepton	11.1 ± 0.2	8.6 ± 0.9	0.6 ± 1.5	7.6 ± 0.4
Kaon	34.7 ± 0.4	18.1 ± 0.7	-0.9 ± 1.1	14.1 ± 0.6
NT1	7.7 ± 0.2	22.0 ± 1.5	1.4 ± 2.3	2.4 ± 0.3
NT2	14.0 ± 0.3	37.3 ± 1.3	-4.7 ± 1.9	0.9 ± 0.2
ALL	67.5 ±0.5	s(sin2b)μ1/ÖQ	25.1 ± 0.8
March 3-9, 2002 F. Forti - La Thuile 2002				

Changes in this analysis

Detector improvements

- I mproved tracking impacts ∆t resolution for reprocessed Run1 data:
 - I mproved usage of the first SVT hit.
 - Improved SVT alignment
 - Improved track finder
 - Published Run2a data already had the improved tracking
- Improved PID impacts tagging
 - Better DI RC alignment and K selector
 - Better μ selector

Analysis changes

- Re-optimized selection criteria
 to improve yield
 - Wider K_s mass window results in 7% increase in $J/\psi K_s$ yield
 - Looser µid, π^0 veto results in 15% J/ ψ K_L yield with purity 60% \rightarrow 54%.
- $B^0 \rightarrow J/\psi K^{*0}$
 - Full angular analysis
 - Reduce feed-across by vetoing $B^+ \rightarrow J/\psi \ K^{*+}$ results in 60% background rejection with 0.5% signal loss.
- New D*D* result

Ú

sin2ß Likelihood Fit

- Unbinned maximum likelihood fit to Δt distribution.
- Background is determined from M_{ES} fit (flat) or MC (peaking)
- B_{flav} sample → mistag rates and ∆t resolution both for signal and for background
- Total of 34 parameters

$$\frac{\mathsf{CP} \; \mathsf{PDF}}{f_{CP,\pm}(?t)} = \left\{ \frac{\frac{e^{-?t/t}B_d}{4t_{B_d}}}{4t_{B_d}} \times \left(1 \mp ?_f \sin 2\beta (1-2?) \sin (?m_d?t) \right) \right\} \otimes \mathbb{R}$$

$$\frac{\mathsf{Mixing \; PDF}}{f_{mixing,\pm}(?t)} = \left\{ \frac{\frac{e^{-?t/t}B_d}{4t_{B_d}}}{4t_{B_d}} \times \left(1 \pm (1-2?) \cos (?m_d?t) \right) \right\} \otimes \mathbb{R}$$

Ú

CP asymmetries

Û

$sin 2\beta$ fit results

$Sin 2\beta = 0.75 \pm 0.09$ (stat) ± 0.04 (sys)

Systematic Errors

Error	K _S	K	K*0	Total
Statistic	0.10	0.19	0.56	0.09
Systematic	0.04	0.07	0.10	0.04

- Signal resolution and vertex reconstruction **0.015**
 - Resolution model, outliers, SVT residual misalignment
- Tagging **0.007**
 - possible differences between B_{CP} and B_{flavor} samples
- Backgrounds **0.023** (overall)
 - Signal probability, peaking background, CP content of background
 - Total 0.05 for J/ Ψ K_L channel; 0.09 for J/ Ψ K^{*0}
- Montecarlo correction (none applied) : 0.014
- External parameters (Δm and τ_B) : 0.014
- Total = 0.04 for total sample

Cross checks

Û ?

- No asymmetry on B_{flav} sample: Sin2 β = -0.004 ± 0.027
- Full MC studies reproduce well the input value
- No mistag rate (w) dependence on Δt .
- <u>Lifetime</u> and <u>mixing</u> results

Cross checks II

- The sin2β variation when using J/Ψ Mass Const alternative vertexing algorithms No Ks Mass Const has been measured
 - Impose J/Ψ mass constraint
 - Remove Ks mass constraint
 - Charmonium only in CP vertex
 - No Bremsstrahlung recovery in J/Ψ→e+e-
 - Different ways of using the beam spot constraint
 - Use average boost to extract Δt from Δz w/out using p(B_{rec}).
 - Do not veto conversion pairs
 - Do not veto V⁰s
- All the effects are compatible with the systematic error estimate

B⁰ R D*+D*-

- Event reconstruction in $D^{*+} \rightarrow D^0 \pi^+$ or $D^+ \pi^0$ (but not both $D^{*'s}$ in π^0).
- Motivation: can provide cross check for SM prediction
- Mixed CP: requires CP-odd fraction measurement. With 20/fb: R_T=0.22 ± 0.18(stat) ± 0.03(syst)

• With full sample we fit the sin $\Delta m\Delta t$ and $\cos \Delta m\Delta t$ terms

- $S = -0.05 \pm 0.45(stat) \pm 0.05(syst)$ $C = 0.12 \pm 0.30(stat) \pm 0.05(syst)$
- Disregarding penguin contributions $S = (1-2R_T)sin 2\beta$

Other results

- Search for direct CP: float $|\lambda|$ in the $\eta_{\text{CP}}\text{=-}1$ sample

 $\begin{aligned} |\lambda| &= 0.92 \pm 0.06 \text{ (stat.)} \pm 0.03 \text{ (syst.)} \\ \text{Im } \lambda / |\lambda| &= 0.76 \pm 0.10 \text{ (i.e. sin } 2\beta) \end{aligned}$

 Asymmetry in B⁰→π⁺π⁻/K⁺π⁻ (30 /fb) (to be updated soon)

 $S(\boldsymbol{p}^{+}\boldsymbol{p}^{-}) = 0.03_{-0.56}^{+0.53} (stat) \pm 0.11 (syst)$ $C(\boldsymbol{p}^{+}\boldsymbol{p}^{-}) = -0.25_{-0.47}^{+0.45} (stat) \pm 0.14 (syst)$ $A_{CP}(K^{\pm}\boldsymbol{p}^{\mp}) = -0.07 \pm 0.08 (stat) \pm 0.02 (syst)$

The CKM triangle picture

One solution for β is consistent with measurements of sides of Unitarity Triangle

Error on sin2 β is dominated by statistics \rightarrow will decrease ~1/ $\sqrt{Luminosity}$

Method as in Höcker et al, Eur.Phys.J.C21:225-259,2001 (also other recent global CKM matrix analyses)

Û

Summary and outlook

- New measurement of CP violation in the B sector $Sin2\beta = 0.75 \pm 0.09$ (stat) ± 0.04 (sys)
- Sin2β is beginning to be a precision measurement providing effective unitarity triangle constraints
- It is still statistically limited and will improve with the 100/fb expected by summer 2002
- Non-golden and rare decay modes begin to be accessible and will provide SM consistency checks.
- Stay tuned, exciting physics ahead.

Ú

===== Backup Slides =====

- $\Delta t Resolution function$
- <u>sin2β Likelihood Fit parameters</u>
- Mis-tagging and resolution
- $B^0 \rightarrow J/\psi K^*$
- Run1 data sample changes
- <u>B Reco sample</u>
- Lifetime and mixing

Ú

sin2β Likelihood Fit parameters

- Global unbinned maximum likelihood fit to data:
- Mistag rates,
 Dt resolutions
 - sin(2β)

1		

tagged CP samples

tagged flavor sample

Likelihood fit free parameters			
sin(2β)	1		
Mistags (w, ∆w)	8		
Signal Δt resolution	8		
Background time dependence	6		
Background Δt resolution	3		
Background mistags	8		
TOTAL	34		

Global correlation coefficient for $sin(2\beta) \rho = 13\%$ $\tau_B = 1.548 \text{ ps and}$ $\Delta m_d = 0.472 \text{ ps}^{-1} \text{ fixed}$

→ determine Dt characteristics from data

March 3-9, 2002

F. Forti - La Thuile 2002

Ú

Mis-tagging and resolution

Ú

sin2β from the run1 data sample

Result	sin2β	Signal evts.	Purity
Old	0.49 ± 0.20	430	80%
New	0.60 ± 0.15	540	73%

 Δm_d result stable Old: 0.493 ± 0.024 ps⁻¹ New: 0.502 ± 0.023 ps⁻¹

- Reprocessed data with significantly better SVT internal alignment.
- Event-by-event change in $\Delta t \approx 0.9 \sigma_{\Delta t}$
- Fitted Δt resolution shows the improvement.
- Investigated change in sin2β in common events (old vs. reprocessed)
 - Estimated size of statistical spread of $\Delta sin 2\beta$ with toy MC, full MC, and data.
 - Change is about 2 sigma.

Samples of Fully-Reconstructed B^o Decays

 $\mathbf{m}_{\mathbf{ES}} = \sqrt{(\mathbf{E}_{\text{beam}}^{\text{cm}})^2 - (\mathbf{p}_{B}^{\text{cm}})^2} \quad [\text{GeV}]$ 2002 28

F. Forti - La Thuile 2002

B⁰ ® J/y K* angular analysis

- Different orbital angular momenta give mixed CP final states
- Three approaches to the fit, in order of increasing sensitivity (and complexity)
 - 1D : fit to Δt using the fraction of CP-odd (R_T) as a dilution
 - 2D : fit to Δt and θ_{tr}
 - 4D : full angular analysis
- 4D analysis is sensitive to $|\cos 2\beta|$

Ú

B⁰ ® J/y K*

- From B^o ® J/y K* full angular analysis we find $\cos 2\mathbf{b} = -3.3^{+1.0}_{-0.6}(\text{stat}) \pm 0.7(\text{syst})$
- The sign of $\cos 2\beta$ cannot be measured because of strong phases in the transversity amplitudes.
- The effect seems large but it is statistical:

$$\left|\cos 2\boldsymbol{b} - \sqrt{1 - \sin^2 2\boldsymbol{b}}\right| = 2.2\boldsymbol{s}\left(\cos 2\boldsymbol{b}\right)$$

March 3-9, 2002

Ú ?

Select results

Lifetime with B reco

- Exclusively reconstruct in hadronic modes
 - $B^0 \rightarrow D(*)p/r/a_1, B^0 \rightarrow J/\psi K^{*0}$, likewise for B^0 B^+
 - Signal probability estimated from m_{ES} value
 - Background ∆t parameters determined from sideband
- Lifetime measurements

PRL 201803 (2001)

 $\begin{aligned} \tau_{BO} &= 1.546 \pm 0.032 \pm 0.022 \text{ ps} \\ \tau_{B+} &= 1.673 \pm 0.032 \pm 0.023 \text{ ps} \\ \tau_{BO} / \tau_{B+} &= 1.082 \pm 0.026 \pm 0.012 \end{aligned}$

 Modeling of ∆t outliers in resolution function is largest syst. uncertainty

Ú

Mixing with B reco

- Mixing measurement uses 32 M BB pairs (29.7 fb⁻¹)
 - Resolution model allows for differences between Run-1 and Run-2 vertexing and alignment w/ separate params.
 Submitted to PRL (2001)

 Δm_d = 0.516 ± 0.016 ± 0.010 ps⁻¹

F. Forti

- Largest syst. are
 - Varying B⁰ lifetime w/in PDG errors
 - SVT alignment

Select results

Partial rec. with D*Iv

- Select events with high p lepton and soft track consistent w/ $\pi_{\rm slow}$ from D^* decay
- Use π_{slow} direction to estimate D^* mom.
 - Compute neutrino inv. mass
- Lifetime measurement
 - Large sample →binned fit
 - Correction applied for bias due to D^0 daughter tracks outside π_{slow} cone

 $\tau_{B0} = 1.529 \pm 0.012 \pm 0.029 \text{ ps} \qquad \begin{array}{c} \text{Submitted to} \\ \text{PRL (2002)} \end{array}$

Largest syst. is ∆t resolution model

Lifetime with dileptons

- Select events with two high *p* leptons
 - Can inclusively reconstruct π_{slow} to select B^0 over B^+
- Fit (transverse) primary vertex with *I* tracks and beamspot
 - Use closest approach between each / track and this vtx to measure z
- Model includes contributions from
 - One or both leptons from *B* cascade decays
 - Semileptonic B⁺ decays via D^{**}
- Preliminary lifetime result

 τ_{B0} = 1.557 \pm 0.028 \pm 0.027 ps

 τ_{B^+} = 1.655 \pm 0.026 \pm 0.027 $\,ps$

 $\tau_{B0}^{}/\tau_{B+}^{} = 1.064 \pm 0.031 \pm 0.026$

Largest systematics from res'n and bkg

Mixing with dileptons

- Very precise mixing measurement
 - Fraction of B^+ in the sample is also a fit parameter $\Delta m_d = 0.493 \pm 0.012 \pm 0.009 \text{ ps}^{-1}$ Submitted to PRL (2001)
 - Largest syst. are B^0 lifetime and resolution function param'zn

Û