$\mathcal{B a B a r}$ Results on CP Violation in the \mathcal{B} Sector

Francesco Forti $I \mathcal{N} \mathcal{F} \mathcal{N}$ - Pisa

On Berfalf of the $\mathcal{B a B a r}$ Collaboration

Les Rencontres de Physique de la Vallée d'Aoste
La Thuile, March 3-9 2002

CP Violation in the Standard Model

CP violation arises from single phase in CKN matrix

$$
\mathbf{V}=\left(\begin{array}{lll}
\mathbf{V}_{\mathrm{ud}} & \mathbf{V}_{\mathrm{us}} & \mathbf{V}_{\mathrm{ub}} \\
\mathbf{V}_{\mathrm{cd}} & \mathbf{V}_{\mathrm{cs}} & \mathbf{V}_{\mathrm{cb}} \\
\mathbf{V}_{\mathrm{td}} & \mathbf{V}_{\mathrm{ts}} & \mathbf{V}_{\mathrm{tb}}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{1}-\frac{\mathbf{1}}{\mathbf{2}} \lambda^{2} & \lambda & \mathbf{A} \lambda^{3}(\rho-\mathbf{i} \eta) \\
-\lambda & \mathbf{1}-\frac{\mathbf{1}}{\mathbf{2}} \lambda^{2} & \mathbf{A} \lambda^{2} \\
\mathbf{A} \lambda^{3}(\mathbf{1}-\rho-\mathbf{i} \eta) & -\mathbf{A} \lambda^{2} & \mathbf{1}
\end{array}\right)+\mathbf{O}\left(\lambda^{4}\right)
$$

Unitarity of \mathcal{V} implies eg. $\quad \mathcal{V}_{u d} \mathcal{V}_{u 6}^{*}+\mathcal{V}_{c d} \mathcal{V}_{c G}^{*}+\mathcal{V}_{t d} \mathcal{V}_{t 6}^{*}=0$
\rightarrow represented as 'unitarity triangle' in complex plane

A kind of $C P$
violation results from interference
Getween decays with and without mixing

$$
\underbrace{?_{f_{C P}}=\frac{q}{p} \cdot \frac{\bar{A}_{f_{C P}}}{A_{f_{C P}}}}_{=\left|?_{f_{C P}}\right| e^{-2 i \varphi_{C P}}}
$$

$$
\lambda_{\mathrm{f} \mathrm{CP}} \neq \pm 1 \Rightarrow \operatorname{Prob}\left(\overline{\mathrm{~B}}_{\mathrm{phys}}^{0}(\mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right) \neq \operatorname{Prob}\left(\mathrm{B}_{\mathrm{phys}}^{0}(\mathrm{t}) \rightarrow \mathrm{f}_{\mathrm{CP}}\right)
$$

Time-dependent $C P$ asymmetry:

$$
\begin{aligned}
A_{f_{C P}}(t) & =\frac{\Gamma\left(\bar{B}_{p h y s}^{0}(t) \rightarrow f_{C P}\right)-\Gamma\left(B_{p h y s}^{0}(t) \rightarrow f_{C P}\right)}{\Gamma\left(\bar{B}_{p h y s}^{0}(t) \rightarrow f_{C P}\right)+\Gamma\left(B_{p h y s}^{0}(t) \rightarrow f_{C P}\right)} \\
& =C_{f_{C P}} \cos \left(\Delta m_{d} t\right)+S_{f_{C P}} \sin \left(\Delta m_{d} t\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{C}_{f_{C P}} & =\frac{\left|\lambda_{f_{C P}}\right|^{2}-1}{\left|\lambda_{f_{C P}}\right|^{2}+1} \\
S_{f_{C P}} & =\frac{2 \operatorname{Im} \lambda_{f_{C P}}}{1+\left|\lambda_{f_{C P}}\right|^{2}}
\end{aligned}
$$

Golden CP modes

Single we ak priase $=$ no direct $\mathscr{\ell} P \longrightarrow\left|\lambda_{J / \psi K_{S, L}^{0}}\right|=1$

$$
A_{J / \psi K_{S, L}^{0}}(t)=-\eta_{J / \psi K_{S, L}^{0}} \underset{\leftarrow}{\sin 2 \beta} \sin \left(\Delta m_{d} t\right)
$$

$$
\begin{gathered}
\eta_{C \mathcal{P}}=-1(+1) \\
\text { for } \mathcal{J} / \psi \mathcal{R}_{\mathcal{S}(\mathcal{L})}
\end{gathered}
$$

$\|$ Theoretically cle an way to me asure $\sin 2 \beta$
$\|$ Clear experimental signature
$\|$ Relatively large branching fraction

PEP. II Asymmetric B Factory

- 9 GeV e on $3.1 \mathrm{GeV} \mathrm{e}^{+}$: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{B} \overline{\mathrm{B}}$
- $\mathrm{Y}(4 \mathcal{S})$ boost in lab frame : $\beta \gamma=0.55$

S LAC B Factory Performance

- PEP-I I top luminosity:
$4.51 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
(design 3.0×10^{33})
- Top recorded $L / 24$ 亿:
$303.4 \mathrm{pb}^{-1}$
- $\mathcal{B A B A R}$ logging effic iency:

$$
>96 \%
$$

- Analys is Data samples

$$
\begin{aligned}
& \text { - Run1: } 20.7 / f 6 \\
& \text { - Run2a: } 9.0 / f 6 \\
& \text { - Run26: } 26.7 / f 6 \\
& \text { - Total }: 56.4 / f b
\end{aligned}
$$

$$
\begin{aligned}
& P E P \text { - I I delivered : } 75.25 \mathrm{fb}^{-1} \\
& \mathcal{B A B A R} \text { recorded : } 71.48 \mathrm{fb}^{-1} \text { (incl.7.85 } \mathrm{fb}^{-1} \text { off peak) }
\end{aligned}
$$

The $\mathcal{B A B A R}$ Detector

$$
\begin{aligned}
& \text { SVI: } \quad 97 \% \text { efficiency, } 15 \mu_{m} \text { zit resolution (inner layers, perp.tracks) } \\
& \mathcal{S V I}+\mathcal{D C H}: \sigma\left(p_{\mathcal{T}}\right) / p_{\mathcal{T}}=0.13 \% \times p_{\mathcal{T}}+0.45 \%, \sigma\left(z_{0}\right)=65 @ 1 \mathrm{GeV} / c \\
& \mathcal{D I R C}: \quad \mathcal{K} \pi \text { separation } 4.2 \sigma @ 3.0 \mathrm{GeV} / c \rightarrow 2.5 \sigma @ 4.0 \mathrm{GeV} / c \\
& \text { EMC: } \quad \sigma_{\mathscr{E}} / \mathcal{E}=2.3 \% \cdot \mathcal{E}^{1 / 4} \oplus 1.9 \%
\end{aligned}
$$

Analysis strategy

Vertex and Δt Reconstruction

-Reconstruct $\mathcal{B}_{\text {rec }}$ vertex from

$$
\text { -charged } \mathcal{B}_{\text {rec }} \text { daughters }\left(\sigma_{z}\left(\mathcal{B}_{\text {Rec }}\right)=65 \mu m\right)
$$

- Determine $\mathcal{B}_{\text {Tag }}$ vertex from
-charged tracks not belonging to $\mathcal{B}_{\text {rec }}$ $-\mathcal{B}_{\text {rec }}$ vertex and momentum -Geam spot and $\mathrm{Y}(4 \mathcal{S})$ momentum

- High efficiency (93\%) through inclusion of 1-prong tags
- Average Δz resolution is $180 \mu m\left(<|\Delta z|>=\beta \gamma_{c} \tau=260 \mu \mathrm{~m}\right)$ corresponding to a Δt resolution of 0.6 ps .

Hie rarchical tagging categories:

- Lepton-charge of lepton
- Kaon - net charge of Kaon $\underset{\mathbf{b} \quad \mathbf{C}}{\bullet}$
- NT I 1 exploit information from
- N(T2 soft π, unidentified I

Large $\mathcal{B}_{\text {flav }}$ sample provide tagging performance measurement:

Tagging category	Efficiency $\varepsilon(\%)$	Mistag fraction $w(\%)$	$\bar{B}^{0} / \mathcal{B}^{0}$ diff. $\Delta w(\%)$	$Q=\varepsilon(1-2 w)^{2}$ $(\%)$
Lepton	11.1 ± 0.2	8.6 ± 0.9	0.6 ± 1.5	7.6 ± 0.4
Kaon	34.7 ± 0.4	18.1 ± 0.7	-0.9 ± 1.1	14.1 ± 0.6
$\mathcal{N I} 1$	7.7 ± 0.2	22.0 ± 1.5	1.4 ± 2.3	2.4 ± 0.3
$\mathcal{N I} 2$	14.0 ± 0.3	37.3 ± 1.3	-4.7 ± 1.9	0.9 ± 0.2
$\mathcal{A L L}$	67.5 ± 0.5		$\sigma(\sin 2 \beta) \propto 1 / \sqrt{ } Q$	25.1 ± 0.8

Changes in this analysis

Detector improvements

- Improved tracking impacts Δt resolution for reprocessed Run1 data:
- Improved usage of the first SVI fit.
- Improved SVI alignment
- Improved track finder
- Publisfied Run2a data already had the improved tracking
- Improved PID impacts tagging
- Better $\mathcal{D I}$ RC alignment and K selector
- Better μ selector

Analys is changes

- Re-optimized selection criteria to improve yield
- Wider \mathcal{K}_{S} mass windowresults in 7% increase in $g / \psi \mathcal{K}_{s}$ yield
- Looser Mid, π^{0} ve to results in $15 \% \mathrm{~g} / \psi \mathcal{K}_{ \pm}$yield with purity $60 \% \rightarrow 54 \%$.
- $\mathcal{B}^{0} \rightarrow \mathcal{I} / \Psi \mathcal{K}^{* 0}$
- Full angular analysis
- Reduce feed-across by vetoing $\mathcal{B}^{+} \rightarrow$ I $/ \psi$ K $^{*+}$ results in 60% background rejection with 0.5% signalloss.
- $\mathfrak{N e w} \mathcal{D}^{*} \mathcal{D}^{*}$ result

Before tagging:
The CP Sample
$\begin{aligned} & \frac{1999-2001 \text { data }}{62 \times 10^{6} \overline{\mathcal{B B}} \text { pairs, }} \\ & 56 \mathrm{fb}^{-1} \text { on peak }\end{aligned}$

sin2 β Likelifood Fit

- Unbinned maximum likelifood fit to Δt distribution.
- Background is determined from $\mathcal{M}_{\mathfrak{E S}}$ fit (flat) or $\mathcal{M C}$ (peaking)
- $\mathcal{B}_{\text {flav }}$ sample \rightarrow mistag rates and Δ t resolution both for signal and for background
- Total of 34 parameters

$$
\begin{aligned}
& \text { fixed } \\
& f_{\text {mixing } \pm}(? t)=\left\{\frac{e^{-1 ? t \mid / B_{d}}}{4 t_{B_{d}}} \times\left(1 \pm(\mathbf{1 - 2 \boldsymbol { ? }}) \cos \left(? m_{d} ? t\right)\right)\right\} \otimes \boldsymbol{R}
\end{aligned}
$$

CP asymmetries

$$
A_{C P} \approx(1-2 w) \sin 2 \beta \sin \Delta m \Delta t \quad \Delta \mathrm{t}(\mathrm{ps})
$$

$$
A_{C P} \approx-(1-2 w) \sin 2 \beta \sin \Delta m \Delta t \quad \Delta \mathrm{t}(\mathrm{ps})
$$

sin2 β fit results

$$
\sin 2 \beta=0.75 \pm 0.09 \text { (stat) } \pm 0.04 \text { (sys) }
$$

Systematic Errors

Error	\mathcal{K}_{S}	\mathcal{K}_{Σ}	$\mathcal{K}^{* 0}$	Total
Statistic	0.10	0.19	0.56	0.09
Systematic	0.04	0.07	0.10	0.04

- Signal resolution and vertex reconstruction 0.015
- Resolution model, outliers, SVI residual misalignment
- Tagging 0.007
- possible differences between $\mathcal{B}_{C p}$ and $\mathcal{B}_{\text {flavor }}$ samples
- Backgrounds 0.023 (overall)
- Signal probability, peaking 6ackground, CP content of background
- Total 0.05 for $\operatorname{J} / \Psi \mathcal{K}_{£}$ channel; 0.09 for $\operatorname{I} / \Psi \mathcal{K}^{*}$
- Montecarlo correction (none applied):0.014
- External parameters $\left(\Delta m\right.$ and $\left.\tau_{\mathcal{B}}\right): 0.014$
- Total $=0.04$ for total sample

Cross checks

- No asymmetry on $\mathcal{B}_{\text {flav }}$ sample:
Sin2 $\beta=-0.004 \pm 0.027$
- Full $\mathfrak{M C}$ studies reproduce well the input value
- No mistag rate (w) dependence on Δt.
- Lifetime and mixing results

Cross checks II

- The sin2 β variation when using alternative vertexing algorithms fas been measured
- Impose g/世 mass constraint
- Remove Ks mass constraint
- Charmonium only in CPvertex
- No Bremsstraflung recovery in $g / \Psi \rightarrow_{e}+e$.
- Different ways of using the Geam spot constraint
- Ulse average boost to extract Δt from $\Delta z w /$ out using $p\left(\mathcal{B}_{\text {rec }}\right)$.
- Do not ve to conversion pairs
- Do not veto $\mathscr{V}^{0} s$

- All the effects are compatible with the systematic error estimate
- Event reconstruction in $\mathcal{D}^{*+} \rightarrow \mathcal{D}^{0} \pi^{+}$or $\mathcal{D}^{+} \pi^{0}$ (6ut not botf \mathcal{D}^{*} s in $\left.\pi^{0}\right)$.
- Motivation: can provide cross checkfor $\mathcal{S} \mathcal{M}$ prediction
- Mixed CP: requires CP-odd fractionmeasurement. Witf 20/f6:

$$
\mathcal{R}_{T}=0.22 \pm 0.18(s t a t) \pm 0.03(\text { syst })
$$

- With full sample we fit the $\sin \Delta m \Delta t$ and $\cos \Delta m \Delta t$ terms

$$
S=-0.05 \pm 0.45(s t a t) \pm 0.05(s y s t) \quad C=0.12 \pm 0.30(s t a t) \pm 0.05(s y s t)
$$

- Disregarding penguin contributions $S=\left(1-2 \mathcal{R}_{\mathcal{T}}\right) \sin 2 \beta$

Other results

- Searchfor direct CP: float $|\lambda|$ in the $\eta_{C P}=-1$ sample

$$
\begin{aligned}
& |\lambda|=0.92 \pm 0.06 \text { (stat.) } \pm 0.03 \text { (syst.) } \\
& \operatorname{Im} \lambda /|\lambda|=0.76 \pm 0.10 \text { (i.e. } \sin 2 \beta)
\end{aligned}
$$

- Asymmetry in $\mathcal{B}^{0} \rightarrow \pi^{+} \pi^{-} / \mathcal{K}^{+} \pi^{-}(30 / f 6)$ (to be updated soon)

$$
\begin{aligned}
S\left(\pi^{+} \pi^{-}\right) & =0.03_{-0.56}^{+0.53}(\text { stat }) \pm 0.11(\text { syst }) \\
C\left(\pi^{+} \pi^{-}\right) & =-0.25_{-0.47}^{+0.45}(\text { stat }) \pm 0.14(\text { syst }) \\
A_{C P}\left(K^{ \pm} \pi^{\mp}\right) & =-0.07 \pm 0.08(\text { stat }) \pm 0.02(\text { syst })
\end{aligned}
$$

The CTOM triangle picture

Method as in Höcker et al, Eur.Phys.I.C21:225-259,2001 (also other recent global CKOM matrix analyses)

Summary and out look

- Newmeasurement of $\mathcal{C P}$ violation in the \mathcal{B} sector

$$
\sin 2 \beta=0.75 \pm 0.09(\text { stat }) \pm 0.04 \text { (sys) }
$$

- Sin2 β is beginning to be a precision measurement providing effective unitarity triangle constraints
- It is still statistically limited and will improve with the $100 / f 6$ expected by summer 2002
- Non-golden and rare decay modes begin to be accessible and will provide $\mathcal{S M}$ consistency checks.
- Stay tuned, exciting physics afead.

$$
======\mathcal{B a c k u p} \text { S lides }=====
$$

- Δt Resolutionfunction
- sinz β Likelifood Fit parameters
- Mis-tagging and resolution
- $\underline{B}^{0} \rightarrow$ I $/ \psi \mathbb{K}^{*}$
- Run1 data sample cranges
- BReco sample
- Lifetime and mixing

Δt Signal Re solution

- event-6y-event $\sigma(\Delta t)$ from vertex errors
- Resolution Function (RF) - 2 models:
- Sum of 3 Gaussians (mixing + CPanalyses)

$$
\begin{aligned}
R= & \left(1-f_{\text {tail }}-f_{\text {outlier }}\right) G\left(S_{\text {core }} \sigma_{\Delta t}, \mu_{\text {core }}\right) \\
& +f_{\text {tail }} G\left(S_{\text {tail }} \sigma_{\Delta t}, \mu_{\text {tail }}\right) \\
& +\quad f_{\text {outlier }} G\left(\sigma_{\text {outlier }}, \mu_{\text {outlier }}\right)
\end{aligned}
$$

Kigh fle xibility

- Lifetime-Like bias (lifetime analysis)

$$
\begin{aligned}
R= & \left(1-f_{\text {tail }}-f_{\text {outlier }}\right) G\left(S \sigma_{\Delta t}, \mu_{\text {core }}=0\right) \\
& +f_{\text {tail }} G\left(S \sigma_{\Delta t}, \mu=0\right) \otimes \exp \left(-\Delta t / S \tau_{\text {bias }}\right) \\
& +f_{\text {outlier }} G\left(\sigma_{\text {outlier }}, \mu_{\text {outlier }}\right) \\
& \quad \text { small correlation with } \tau(\mathcal{B})
\end{aligned}
$$

sin 2 β Likelihood Fit parameters

- Global unlined maximum likelihood fit to data:
- Mistag rates, \quad tagged flavor sample Δt resolutions
- $\sin (2 \beta)$

Likelihood fit free parameters	
$\sin (2 \beta)$	1
Mistags $(w, \Delta w)$	8
Signal Δt resolution	8
Background time dependence	6
Background Δ t resolution	3
Background mistags	8
$\mathcal{T O T A L}$	34

Global correlation coefficient for $\sin (2 \beta) \rho=13 \%$

$$
\tau_{\mathcal{B}}=1.548 \mathrm{ps} \text { and }
$$

$\Delta m_{d}=0.472 \mathrm{ps}^{-1}$ fixed
\rightarrow determine Δt characteristics from data

Mis-tagging and resolution

perfect
flavor tagging ef time resolution
realistic
mis-tagging \&finite time resolution

Me asure mis-tagging probability w and Δt resolution function R with flavor eigenstate sample
\rightarrow Known mixing amplitude (=1) and large statistics

$$
\begin{array}{|c}
C P P P D \mathcal{F} \\
f_{C P, \pm}(? t)
\end{array}=\left\{\frac{e^{-!? t \mid t_{B_{d}}}}{4 t_{B_{d}}} \times\left(1 \mp ?_{f} \sin 2 \beta(\mathbf{1 - 2 \boldsymbol { 2 }}) \sin \left(? m_{d} ? t\right)\right)\right\} \otimes R
$$

$$
\text { Mixing } \operatorname{PDF}
$$

$$
f_{\text {mixing } \pm}(? t)=\left\{\frac{e^{\dagger ? t \mid / t_{d}}}{4 t_{B_{d}}} \times\left(1 \pm(\mathbf{1 - 2 \boldsymbol { 2 }}) \cos \left(? m_{d} ? t\right)\right)\right\} \otimes \boldsymbol{R}
$$

$\sin 2 \beta$ from the run1 data sample

Result	$\sin 2 \beta$	Signal evts.	Purity
Old	0.49 ± 0.20	430	80%
New	0.60 ± 0.15	540	73%

> | $\Delta \mathrm{m}_{\mathrm{d}}$ result stable | |
| :--- | :--- |
| Old: | $0.493 \pm 0.024 \mathrm{ps}^{-1}$ |
| New: | $0.502 \pm 0.023 \mathrm{ps}^{-1}$ |

- Reprocessed data with significantly better SVT internal alignment.
- Event-by-event change in $\Delta \mathrm{t} \approx 0.9 \sigma_{\Delta t}$
- Fitted Δt resolution shows the improvement.
- Investigated change in $\sin 2 \beta$ in common events (old vs. reprocessed)
- Estimated size of statistical spread of $\Delta \sin 2 \beta$ with toy MC, full MC, and data.
- Change is about 2 sigma.

Samples of Fully-Reconstructed

$\mathcal{F l a v o r}$ eigenstates $\mathcal{B}_{\text {flav }}$ for lifetime and mixing measurements

- Cabib6o-favored hadronic decays $\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{u}}$ "Open Charm" decays

$$
\begin{aligned}
& B^{0} \rightarrow D^{(*)} p^{+} / ?^{+} / a_{1}^{+} \\
& B^{-} \rightarrow D^{* * 0} p^{-}
\end{aligned}
$$

- Charmonium Decays $\mathrm{b} \rightarrow(\mathrm{c} \overline{\mathrm{c}}) \mathrm{s}$

$$
\begin{aligned}
& B^{0} \rightarrow J / \psi K^{* 0}\left(K^{+} \pi^{-}\right) \\
& B^{+} \rightarrow J / \psi K^{+}, \psi(2 S) K^{+}
\end{aligned}
$$

$\mathcal{B}^{0} \rightarrow g / \psi \mathcal{K}^{*}$ angular analys is

- Different orbital angular momenta give mixed CP finalstates
- Three approaches to the fit, in order of increasing sensitivity (and comple xity)
- 1D : fit to Δt using the
fraction of $C P$-odd $\left(\mathcal{R}_{T}\right)$ as a dilution
$-2 \mathcal{D}$: fit to Δt and $\theta_{t r}$
- 4D : full angular analysis
- $4 \mathcal{D}$ analysis is sensitive to $|\cos 2 \beta|$
- From $\mathcal{B}^{0} \rightarrow$ g $/ \Psi \mathcal{K}^{*}$ full angular analys is we find $\cos 2 \beta=-3.3_{-0.6}^{+1.0}($ stat $) \pm 0.7($ syst $)$
- The sign of $\cos 2 \beta$ cannot be measured because of strong phases in the
 transversity amplitudes.
- The effect seems large but it is statistical:

$$
\left|\cos 2 \beta-\sqrt{1-\sin ^{2} 2 \beta}\right|=2.2 \sigma(\cos 2 \beta)
$$

Lifetime with \mathcal{B} reco

- Exclusively reconstruct in fadronic mode ε_{2500}
- $\mathcal{B}^{0} \rightarrow \mathcal{D}\left(^{*}\right) \pi / \rho / a_{1}, \mathcal{B}^{0} \rightarrow g / \psi \mathcal{K}^{*}$, like wis e $f o{ }_{2000}=B^{o}$ \mathcal{B}^{+}
- Signal probability estimated from mes value
- Background Δt parameters determined from side 6 and

Energy-substituted mass

- Lifetime measurements

PRL 201803 (2001)

$$
\begin{aligned}
& \tau_{\mathcal{B} 0}=1.546 \pm 0.032 \pm 0.022 \mathrm{ps} \\
& \tau_{\mathcal{B}_{+}}=1.673 \pm 0.032 \pm 0.023 \mathrm{ps} \\
& \tau_{\mathcal{B} O} / \tau_{\mathcal{B}_{+}}=1.082 \pm 0.026 \pm 0.012
\end{aligned}
$$

- Modeling of Δt outliers in resolution function is largest syst. uncertainty

Mixing witf \mathcal{B} reco

- Mixing measurement uses $32 \bar{M} \mathcal{B B}$ pairs (29.7 $\left.f b^{-1}\right)$
- Resolution modelallows for differences between Run-1 and Run-2 vertexing and alignment w/ separate params.

Submitted to PRL (2001)
$\Delta m_{d}=0.516 \pm 0.016 \pm 0.010 \mathrm{ps}^{-1}$

- Largest syst.are
- Varying \mathcal{B}^{0} lifetime w/in PDG errors
- SVI alignment

Partialrec. with $\mathcal{D}^{*}[v$

- Select events with higf p le pton and soft trackconsistent $w / \pi_{\text {slow }}$ from \mathcal{D}^{*} decay
- Ulse $\pi_{\text {slow }}$ direction to estimate \mathcal{D}^{*} mom.
- Compute neutrino inv. mass
- Lifetime measurement
- Large sample \rightarrow binned fit
- Correction applie d for bias due to \mathcal{D}^{0} daughter tracks outside $\pi_{\text {slow }}$ cone

- Largest syst.is Δ tresolution model

Lifetime with dile ptons

- Select events with two figfr pleptons
- Can inclusively reconstruct $\pi_{\text {slow }}$ to select \mathcal{B}^{0} over \mathcal{B}^{+}
- Fit (transverse) primaryvertexwitf (tracks and beamspot
- Use closest approach betwe eneacfltrackand this vtx to measure z
- Modelincludes contributions from
- One or botf le ptons from \mathcal{B} cascade decaus
- Semile ptonic \mathcal{B}^{+}decays via $\mathcal{D}^{* *}$
- Preliminary life time result

$$
\begin{aligned}
& \tau_{\mathcal{B} 0}=1.557 \pm 0.028 \pm 0.027 \mathrm{ps} \\
& \tau_{\mathcal{B}^{+}}=1.655 \pm 0.026 \pm 0.027 \mathrm{ps} \\
& \tau_{\mathcal{B} 0} / \tau_{\mathcal{B}+}=1.064 \pm 0.031 \pm 0.026
\end{aligned}
$$

Preliminary

- Largest systematics from resin and $6 K^{2}$

Mixing with dile ptons

- Very precise mixing measurement
- Fraction of \mathcal{B}^{+}in the sample is also a fit parameter

$$
\Delta m_{d}=0.493 \pm 0.012 \pm 0.009 \mathrm{ps}^{-1} \text { Submitted to PRL (2001) }
$$

- Largest syst. are \mathcal{B}^{0} lifetime and resolution function param'zn

