New measurement of $Re(\varepsilon'/\varepsilon)$ by the NA48 experiment at CERN

Frédéric Derue DAPNIA/SPP Saclay and CPPM Marseille (France)

March 6, 2002 La Thuile, 2002

 $XVI^{\grave{e}me}$ Rencontres de physique de la Vallée d'Aoste

on behalf of the NA48 collaboration

Cagliari, Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warsaw, Wien

Double ratio method in NA48

$$R^{meas} = \frac{N(\mathbf{K}_{\mathbf{L}} \to \pi^{0} \pi^{0}) N(\mathbf{K}_{\mathbf{S}} \to \pi^{+} \pi^{-})}{N(\mathbf{K}_{\mathbf{S}} \to \pi^{0} \pi^{0}) N(\mathbf{K}_{\mathbf{L}} \to \pi^{+} \pi^{-})} \simeq 1 - 6Re(\varepsilon'/\varepsilon)$$

 \longrightarrow Statistics: need > 3.10⁶ K_L $\rightarrow \pi^0 \pi^0$ for stat error on R < 0.1%

Systematics: systematic biases in the event counting are made symmetric between $\pi^0 \pi^0$ and $\pi^+ \pi^-$, or K_L and K_S

- The 4 modes are taken simultaneously from the same decay region \Rightarrow Cancellation of fluxes, dead times, inefficiencies, accidental losses...
- Lifetime weighting to equalise distribution of K_S and K_L decay positions \Rightarrow Cancellation of detector acceptance effects
- Use quasihomogeneous Liquid Krypton calorimeter to detect π⁰π⁰and magnetic spectrometer for π⁺π⁻
 ⇒ Minimise backgrounds
- Measure R in Kaon energy bins (5 GeV wide) \Rightarrow insensitive to K_S - K_L difference in E spectrum

NA48 detector

Data analysis

$$R = \frac{N(\mathbf{K}_{L} \to \pi^{0} \pi^{0}) N(\mathbf{K}_{S} \to \pi^{+} \pi^{-})}{N(\mathbf{K}_{S} \to \pi^{0} \pi^{0}) N(\mathbf{K}_{L} \to \pi^{+} \pi^{-})} + \Delta R$$

At first order, almost everything cancels in RCheck and evaluate second order effects ΔR

- 1. Identify $\pi^+\pi^-$ and $\pi^0\pi^0$ and subtract residual backgrounds
- 2. Tag K_S and K_L decays and correct for misidentification
- 3. Define common decay region for $\pi^0 \pi^0$ and $\pi^+ \pi^$ events to ensure flux cancellation (reconstruction uncertainties)
- 4. Compute residual K_S / K_L acceptance differences

!!! All given effects are on the double ratio R!!! $Re(\varepsilon'/\varepsilon) = (1-R)/6$ $\sigma(Re(\varepsilon'/\varepsilon)) = \sigma(R)/6$

Background subtraction in $\pi^+\pi^-$

- K_S : $\Lambda \rightarrow \pi^+\pi^-$ completely rejected by an asymmetry cut - K_L : $K_L \rightarrow \pi \mu \nu$ and $\pi e \nu$, are strongly suppressed by Muon Vetoes and E/p respectively.

Estimate residual background under K_L signal using control regions in invariant mass $M_{\pi\pi}$ and transverse momentum $P_T'^2$

 $\Delta R = (16.9 \pm 3.0) \times 10^{-4}$ syst. error: changes in control regions, modelling of $P_T'^2$ shape

Background subtraction for $\pi^0\pi^0$

K_S / K_L identification

in both decay modes K_S tagged by comparing the event time to proton times as they pass through tagging station

 \blacktriangleright coincidence window of ± 2 ns

in $\pi^+\pi^-$ kaons are also identified through y-vertex

two ways of misidentification: Danger only if $\pi^+\pi^- \neq \pi^0\pi^0$

- K_S mistagged as K_L : $\alpha_{\rm SL}$ tails on time measurement
- K_L mistagged as K_S : α_{LS} Accidental coincidence between K_L and a proton in tagger (rate ~ 30 MHz)

 K_S/K_L misidentification

$$\Delta \alpha_{SL} = \alpha_{SL}^{00} - \alpha_{SL}^{+-}$$
$$\alpha_{SL}^{+-} = 1.6 \times 10^{-4}$$

dominated by tagging station inefficiency $\Delta \alpha_{SL}$ is measured from $2\pi^0$ and $3\pi^0$ events with conversion - by comparing the hodoscope time (from e^+e^-) with LKr time (from photon showers)

> other methods confirm the result

$$\frac{\Delta \alpha_{SL} = 0 \pm 0.5 \times 10^{-4}}{\Delta R = (0 \pm 3) \times 10^{-4}}$$

$$\Delta \alpha_{LS} = \alpha_{LS}^{00} - \alpha_{LS}^{+-}$$

 $\alpha_{LS}^{+-} = (10.649 \pm 0.008)\%$

 $\Delta \alpha_{LS}$ is measured by looking at the probability to see a random proton in a false coincidence using untagged $\pi^0 \pi^0$ and $\pi^+ \pi^-$

the correspondence to the true coincidence for $\pi^0 \pi^0$ is measured with $K_L \rightarrow 3\pi^0$ decays

$$\Delta \alpha_{LS} = 4.3 \pm 1.8 \times 10^{-4}$$
$$\Delta R = (8.3 \pm 3.4) \times 10^{-4}$$

Decay region is defined by applying cuts on the reconstructed kaon energy and the decay vertex position (and AKS for the beginning of the K_S decays)

This definition <u>should be the same</u> for $\pi^+\pi^-$ and $\pi^0\pi^0$ events Otherwise, the kaon flux does not cancel in R

 \Rightarrow Need to understand in details energy and decay vertex computations

Reconstruction uncertainties on energy and decay vertex

 $\pi^+\pi^-$:

 depends on geometry of drift chambers before the magnet (straight track extrapol. to vertex)
checked by:

AKS position measurement

 $\Delta R = (2 \pm 2.8) \times 10^{-4}$

Weight K_L events with $W \approx e^{-t}(1/\tau_{KS} - 1/\tau_{KL})$ \Rightarrow Same decay vertex distribution for K_S and weighted K_L Gain : correction decreased Price : increase in stat. error

Small residual effect from 0.6 mrad angle between K_L and K_S beams \rightarrow Correction estimated using Monte-Carlo

Systematic uncertainties

	ΔR in 10^{-4}		
$\pi^+\pi^-$ trigger inefficiency	-3.6	\pm 5.2 (stat)	
AKS inefficiency	+1.1	± 0.4	
Deconstruction of $\pi^0\pi^0$		± 5.8	
Reconstruction of $\pi^+\pi^-$	+2.0	± 2.8	
\mathbf{D} of the matrix of $\pi^0 \pi^0$	-5.9	± 2.0	
background to $\pi^+\pi^-$	+16.9	± 3.0	
Beam scattering	-9.6	± 2.0	
Accidental tagging	+8.3	\pm 3.4 (part. stat)	
Tagging inefficiency		± 3.0	
Acceptance statistical	1967	\pm 4.1 (MC stat)	
systematic	+20.7	\pm 4.0 (syst)	
Accidental activity		\pm 4.4 (part. stat)	
Long term variations of K_S / K_L		± 0.6	
Total	+35.9	± 12.6	

some uncertainties depend on statistics of control samples or MC

Perspectives for $Re(\varepsilon'/\varepsilon)$

Drift chambers have been repaired

Data taking summer 2001 (mid July - mid October)

Different beam conditions (spill) 97-99 2.4s every 14.4 s (p energy = 450 GeV) 2001 5.2s every 16.8s (p energy = 400 GeV)

 \Rightarrow better duty cycle

Accumulate > $1.4 \times 10^6 K_L \rightarrow \pi^0 \pi^0$

at lower instantaneous intensity

 \Rightarrow complete statistics and verify result under different conditions

Spare transparencies

The following slides have not been shown during the presentation and are used as spare slides for questions

• Redundancy \Rightarrow on-line reconstruction (L2 trigger)

mode detection

Symmetry in the time variations

All four decays are collected at the same time by using simultaneous K_S and K_L beams. They are derived from the same primary proton beam using two targets with different distances to the decay volume.

 \longrightarrow K_S events are weighted with K_L/K_S intensity ratio

in case of dead-time $(\sim 20\%)$ in one decay mode no events are counted also in the other mode

Symmetry in the kaon energy

the targeting angles are tuned to deliver similar decay spectra in the chosen decay volume and in the energy interval 70 to 170 GeV

residual differences in the K_S and K_L decay spectra are reduced by performing the analysis in twenty 5 GeV bins

Beam scattering background

Measure collimator background in $\pi^+\pi^-$ mode from events at $P_T'^2 > 200 \ (MeV/c)^2$ with $M_{\pi\pi} = M_K$

Non linearity checks

PDG: $M_{\eta} = 547.30 \pm 0.12$ MeV

Checks

1998 Systematics prel./final

Corrections and syst. uncertainties on R (Units = 10^{-4})					
Source	1998 prel.		$1998 \mathrm{final}$		
Charged trigger	-1	± 11	-2.6	± 11.4	
Accidental tagging	+1	± 8	16.1	± 5.4	
Tagging efficiency	—	± 3	—	± 3	
Neutral rec. systematics	—	± 10	_	± 5.8	
Charged vertex	+2	± 2	+2	± 2.8	
Acceptance	+31	± 9	+23.4	± 8.3	
Neutral BKG	-7	± 2	-6.3	± 2	
Charged BKG	+19	± 3	+17.6	± 3	
Beam scattering	-10	± 3	-9.6	± 2	
Accid. activity	+2	± 12	_	± 7.1	
Total	+37	± 24	+40.6	± 18.6	
R	9926.7	± 29.4	9927.4	± 25.8	

 $Re(\varepsilon'/\varepsilon) = \frac{1}{6} \times (1-R)$

Experimental situation in spring 2001

Previous generation of experiments (E731,NA31) without conclusive answer : $Re(\varepsilon'/\varepsilon) \neq 0$? only 1.9 σ effect (errors renormalised à la PDG) \longrightarrow New generation of experiments

