The Start of Tevatron and DØ in Run 2

Sabine Crépé-Renaudin **ISN** Grenoble On behalf of the DØ collaboration

- Run 2 : introduction
- o Tevatron
 - o Status
 - o Luminosity
- o **DØ detector**
 - o Status
 - Performance
- **o** First physics results

Run 2

Tevatron upgrade:

o Increased energy

• **Ö**s = 1.96 TeV (Run 1: 1.8 TeV)

- o Increased luminosity
 - o Run 2a: L ~ $1x10^{32}$ cm⁻²s⁻¹, ?Ldt ~ 2 fb⁻¹
 - o Run 2b: L \sim 5x10³² cm⁻²s⁻¹, ?Ldt \sim 15 fb⁻¹

Detector upgrade:

- Necessary adaptation to luminosity upgrade (electronics, trigger, DAQ)
- New tracking system + 2T solenoid
- Add preshower to existing calorimetry
- o New muon system

Run 2 physics

- Standard Model
 - o Top quark properties
 - o W/Z properties
 - o **B physics**
 - 0 **QCD**
- Higgs
- Physics beyond the Standard Model
 - o Supersymmetry
 - o Technicolor
 - o Extra dimensions

0 ...

Tevatron

4

Protons

• Main injector replaces main ring

Antiprotons

- Target upgrades, Li lens
- o debuncher and accumulator stochastic cooling systems
- Run 2b -> use Recycler: antiproton intensity improvement

Tevatron

- o Energy increase
- **o Beam intensity increase / emmittance decrease**

Tevatron parameters

	Run 1b	Run 2a	Run 2b	
p/bunch	2.3	2.7	2.7	10 ¹¹
pbar/bunch	5.5	3.0	10	10 ¹⁰
bunches	6x6	36x36	140x103	
bunch length	60	37	37	ст
bunch spacing	~3500	396	132	ns
interactions/xing	2.5	2.3	4.8	
crossing angle	0	0	136	mrad
p/p emittance	23 p /13 p	20 p /15 p	20 p /15 p	mm mrad
Ös	1.8	1.96	1.96	TeV
typical L	0.16	8.6	52	10 ³¹ cm ⁻² s ⁻¹
?Ldt	3.2	17.3	105	pb-1/week

Sabine Crépé-Renaudin - I SN Grenoble

La Thuile - March, 2002

6

Luminosity

Luminosity to date

Forseen luminosity for 2002

The DØ Collaboration

18 countries
81
institutions
or
universities
500-600
physicists

DØ Upgrade

Calorimeters

Detector

Liquid argon sampling and Uranium absorber (Cu or Steel for coarse hadronic)

- 0 |?| < 1 (central)
- 0 1.2 < |?| < 4.2 (forward)

Readout segmented into h, f for charge detection

- Transverse segmentation ??x?f = 0.1x0.1
- At shower max. : ?? x ? f = 0.05 x 0.05
- o 55 000 channels

<u>Status</u>

• Fully operational (~0.1% bad channel), calibrated: gain and non linearity corrected

Performances

- o e: s(E)/E = 23%/ÖE ⊕ 20%/E ⊕ 0.004
- Compensating e/p ~ 1

Preshowers and ICD

Preshowers

- Central mounted on solenoid (|h| < 1.2)
- Forward on calorimeter endcaps (1.4 < |h| < 2.5)
- Extruded triangular scintillator strips with embedded fibers and Pb absorber (3 or 4 layers)
- Allow to trigger on low-p_T EM showers and reduce overall electron trigger rate by x3-5
- o Central preshower: 80% axial readout
- **o** Forward preshower not readout for the moment

ICD (Inter Cryostat Detector)

- o scintillator tiles
- o Improve coverage for the region $1.1 < |\mathbf{h}| < 1.4$
- Improves jet E_T and ME_T

On the way to W/Z/top physics

13

La Thuile - March, 2002

On the way to W/top physics

Sabine Crépé-Renaudin - I SN Grenoble

La Thuile - March, 2002 14

On the way to QCD physics

ET Gal

15

La Thuile - March, 2002

Plots obtained with < 1 pb⁻¹ (not normalized with L). No trigger efficiency correction applied. Preliminary energy corrections.

Tracking

16

Silicon Microstrip Tracker

р

Detector:

- 1.2 m
- **Barrel : 6 modules of 4 layers (double/single** 0 sided)
- 12 central disks (double sided) 0
- o 4 forward disks (single sided)
- 793 000 channels of electronics 0
- 0 |?| = 3, 2.5 cm < r < 9.5 cm
- o rad hard -> 1 Mrad

Status

o Fully operational

Performance

- o Point resolution to 10mm
 - $s^{vertex} = 40 mm (r-f) ; 100 mm (r-z)$
- o secondary vertex measurement -> b jets

Sabine Crépé-Renaudin - ISN Grenoble

La Thuile - March, 2002 17

On the way to B physics ...

Central Fiber Tracker

Detector

- |?| = 1.7, 20 = r = 50cm
- Eight layers ribbon doublets (axial, stereo 2°), 2.6m active length
- 74 000 830 mm fibers with Visible Light Photon Counters (VLPC) readout (6-13 K)
- o Rad hard (10 years @ 1032)

Status

- o 100% axial readout installed,
- o 50 % for stereo

Performance

- o z information from small angle stereo
- fast r-f information for L1 trigger
- $_{0}$ Position resolution ~ 100 μm

La Thuile - March, 2002

19

Muon detector

Sabine Crépé-Renaudin - I SN Grenoble

Detectors

Wide Angle Muon Proportional Drift Tubes (PDT)

- use existing PDT's for |h| < 1 and faster gas (Ar-CF4-CH4)
- add bottom layer to complete coverage

Forward Tracking Chambers

 Plastic mini-drift tubes provide hit info in 1< h < 2 (3 layers)

Barrel Scintillators

 time info and match mtracks to fiber tracker

Forward Trigger Detectors

• Scintillator pixel counters (3 layers)

Status: fully operational

La Thuile - March, 2002 20

On the way to B physics

 $Z \rightarrow mm$

 $J/y \rightarrow mm$

Sabine Crépé-Renaudin - I SN Grenoble

La Thuile - March, 2002 22

First generation LQ

(2 electrons + 2 jets)

Kinematic cuts: 2 EM objects with $E_T > 25$ GeV and more than 2 jets with $E_T > 20$ GeV S_T = scalar sum of transverse energies of electrons and jets to separate signal and background

Most energetic event has $S_{T} = 315 \text{ GeV}$

Sabine Crépé-Renaudin - I SN Grenoble

La Thuile - March, 2002 24

Search for Extra Dimensions

Search for extra spatial dimensions via virtual graviton effects. Variables: center of mass scattering angle and diEM mass (gg and ee). Kinematic cuts: $E_T(EM) > 25$ GeV

Background dominated by Drell-Yan and direct photon production

Outlook

Tevatron:

- o Run 2 started in March 2001
- 20 pb⁻¹ delivered today, 300 pb⁻¹ expected at the end of the year.

DØ Detectors:

- o Roll in: January 2001
- o Commissioning and calibration
- o Ready to do physics !

Physics Results:

- First Z, W, Ks, J/? ... already there
- **o** First results are really promising
- DØ is looking forward seeing soon: more top, W, Z, QCD and B physics, and why not Susy or Higgs events ?!?!