The CLEO-c Physics Program

Thomas Coan Southern Methodist University and CLEO

- Run plan + Physics focus
- Why charm threshold
- Tagging + absolute Br's
- Leptonic + Semileptonic decays
- QCD probes
- Key detector elements
- Conclude

1

CLEO-c Proposed Run Plan

Started Nov 2001

2002: Y(1S), Y(2S), Y(3S),... ~1-2 fb⁻¹ each Spectroscopy, matrix element, Γ_{ee} 10-20 X existing world's data set

CLEO-c

2003: ψ(3770) – 3 fb⁻¹ 30M DD events, w/ 6M *tagged* D decays (310 times MARK III)

2004: $\sqrt{s} \sim 4100 \text{ MeV} - 3 \text{ fb}^{-1}$ 1.5M D_sD_s events, w/ 0.3M *tagged* D_s decays (480 times MARK III, 130 times BES)

2005: $\psi(3100) - 1 \text{ fb}^{-1}$ 1 Billion J/ ψ decays (170 times MARK III, 15 times BES II)

CLEO-c Physics Focus

Heavy Flavor Physics: "overcome QCD roadblock"

• CLEO-c: precision charm absolute Br measurements

Leptonic decays \rightarrow decay constants

Semileptonic decays \rightarrow Vcd, Vcs, V_CKM unitarity check, form factors

Absolute D Br's normalize B physics

Test QCD techniques in c sector, apply to b sector ⇒ improved Vub, Vcb, Vtd, Vts

Physics beyond SM will have nonperturbative sectors

• CLEO-c: precise measurements of quarkonia spectroscopy & decay provide essential data to calibrate theory.

Physics beyond SM: where is it?

• CLEO-c: D-mixing, charm CPV, charm/tau rare decays.

CESR-c Accelerator

 Modify for low energy operation: w/o extra radiation damping, L ~ E⁴ (L ~ 1.3 x 10³³ @ Y(4S)) w/ wigglers (transverse cooling), L ~ E² (cost \$5M)

Expected machine performance:

\sqrt{s}	$L (10^{32} \text{ cm}^{-2} \text{ s}^{-1})$
3.77 GeV	3.0
4.1 GeV	3.6
3.1 GeV	2.0

• $\Delta E_{\text{beam}} \sim 1.2 \text{ MeV}$ at J/ ψ

Why Charm Threshold?

- Large production σ , low decay multiplicity
- Pure initial state (DD): no fragmentation
- Double tag events: no background
- Clean neutrino reconstruction
- Quantum coherence:

aids D-D mixing and CPV studies

 $D^0 \rightarrow K^- \pi^+ \qquad \overline{D}^0 \rightarrow K^+ e^- \nu$

Tagging Technology

Absolute Br's w/ Double Tags

~ Zero bkgnd in hadronic modes

f_{Dq} from Leptonic Decays

 $|\mathbf{f}_{\mathrm{D}}|^2$ $|\mathbf{V}_{\mathrm{CKM}}|^2$

w/ 3 fb-1 & 3-gen CKM unitarity:

Decay Constant	Reaction	PDG δf/f	CLEO-c δf/f
f _{Ds}	$D_{s}^{+} \rightarrow \mu \nu$	17%	1.9%
f _{Ds}	$D_{s}^{+} \rightarrow \tau v$	33%	1.6%
f _D	$D^{+} \rightarrow \mu \nu$	UL	2.3%

 $Ds \rightarrow \phi l \nu$

25

3.1

Compare to B Factories

	CLEO-c 2 - 4 fb-1	BaBar 400 fb-1	Current Knowledge
f_D	2.3%	10 - 20%	NA
f_Ds	1.7%	6 - 9%	19%
Br (D+ -> $K\pi\pi$)	0.7%	3 - 5%	7%
Br (Ds -> φπ)	1.9%	5-10%	25%
Br (D0 \rightarrow K π)	0.6%	2 - 3%	2%
Statistics lim	ited		
		Systemat	ics and bkgnd limited

T.E. Coan/La Thuile '02

Probing QCD

• Gluons carry color charge \Rightarrow binding: Glueballs = $|gg\rangle$ and Hybrids = $|qqg\rangle$

J/Y ® gX Inclusive g- Spectrum

Central Drift Chamber 12 < r < 82 cm

 $D \rightarrow K\pi$ mass resolution ~ 6.3 MeV Ks mass resolution ~ 2.7 MeV $\sigma_p/p = 0.35\%$ @ p = 1 GeV dE/dx: 5.7% resolution for min-I hadrons

Particle ID w/ RICH

CsI Calorimeter

T.E. Coan/La Thuile '02 Comparison with Other Experiments

proposal stage

China:

BES II is running now.

BES II --> BES III upgrade

BEPC I --> BEPC II upgrade, ~10³² lumi.

Physics after 2005 if approval & construction go ahead.

Quantity	BES II	CLEO-C
J/psi yield	60M	> 1000M
dE/dx res.	9%	4.9%
K/pi separation up to	600 MeV	1500 MeV
momentum res. (500Mev)	1.3%	0.5%
Photon resolution (100 Mev)	70 MeV	4 MeV
Photon resolution (1000 Mev)	220 MeV	21 MeV
Minimum Photon Energy	80 MeV	30 MeV
Solid angle for Tracking	80%	94%
Solid angle for Photons	75%	95%

HALL-D at TJNAL:

 γp to produce states with exotic Quantum Numbers Focus on light states with J PC = 0+-, 1+-, ... Complementary to CLEO-C focus on heavy states with J PC =0++, 2++, ... Physics in 2007+ ?

Unique features of CLEO-c

- Huge data set
 - 20-500 times bigger than previous experiments
- Modern detector
 - Iarge solid angle
 - excellent tracking resolution
 - excellent photon resolution
 - excellent particle identification
- Extra data sets for corroboration
 - Upsilons: 4fb⁻¹
 - Two Photon: 25 fb⁻¹

Summary

- Powerful physics case for CLEO-c
 - Precision flavor physics
 - Nonperturbative QCD
 - Probe for New Physics
- Unique expt'l opportunity
- High performance detector
- Flexible, high-luminosity accelerator
- Experienced collaboration New members wanted!!!
- Optimal timing
 - Flavor physics of this decade
 - Beyond the SM in next decade
 - Synchronized w/ LQCD progress