

F. Cerutti CERN and LNF-INFN

Introduction: SM Higgs production and decay

• The experimental method:

discriminating variables and test statistics

Combined results from the 4 LEP experiments

Latest updates from the experiments:
 ALEPH final publication

Conclusions

Higgs decay

- A 115 GeV Higgs decays into:
 - bb = BR 74% $\tau \tau = BR 7\%$
 - gg,cc =BR~11% W*W*=BR~7% Z*Z*=BR<1%
 </p>

4 channels searched for

H→bb , Z→qq	H→bb , Z→vv
4-jet	Missing energy
BR~54%	BR~15%
H→bb , Z→ll	H $ ightarrow$ bb ($ au\tau$) , Z $ ightarrow$ tr (qq)
Leptonic	tau-tau
BR~5%	BR~8%

- 4-jet b-tag- Event shapes (jet-jet angles, H prodangle, thrust)
 - background: $ZZ \rightarrow bbqq$, qq(g)bb, WW (cscs)
- Missing energy b-tag missing energy, acoplanarity, ...
 - background: $ZZ \rightarrow bbvv$, ($\gamma\gamma$)bb
- Leptonic/tau-tau b-tag lepton I D or τ-I D
 - background: $ZZ \rightarrow bb// \text{ or } ZZ \rightarrow bb\tau\tau$
- For all channels: reconstructed Higgs mass M_h^{reco}

Discriminating variables

- Reconstructed mass: typical mass resolutions
 - Precise knowledge of (E_{LEP}, P_{LEP}) and M_Z used to improve mass resolution (Ex. 4-jet channel 5C fit)
 - Leptonic ~2 GeV 4-jet~2.5 GeV
 - tau-tau ~3 GeV Missing energy ~3.5 GeV

* Close to threshold mass shape is NOT Gaussian: long tails at small m_h

b-tag: impact parameter, secondary vertex,

jet mass, hig- P_t lepton combined with

NN or Likelihood techniques

 Other event shape variables combined with b-tag to form the 2nd discriminating-variable (NN or Likelihood technique)

Analysis strategy:

1) Loose pre-selection applied (reject $\gamma\gamma$ and γ qq)

 2) background-only or background+signal(M_H) hypothesis tested on data (N_{obs}) by means of a test statistics based on 2 *discriminating-variables*: {М^{reco}_н, Event NN/L}

Test statistics used likelihood ratio Q= L_{s+b}/L_b

$$Q(M_{H}) = e^{-s(M_{H})} \prod_{j=1}^{n_{chan}} \prod_{i=1}^{N_{obs}^{j}} \frac{S(X_{i}, M_{H})_{j} + B(X_{i})_{j}}{B(X_{i})_{j}}$$

M_H = Tested Higgs mass hypothesis

Xⁱ = 2 discriminating variable

S,B expected signal and bkg in cha=j bin=l

$$q = -2\ln(\mathbf{Q}) = 2s - 2\sum_{j=1}^{n_{chan}} \sum_{i=1}^{N_{obs}^{J}} \log\left(1 + \frac{s_{i,j}}{b_{i,j}}\right)$$

- Gives optimal s+b vs b separation (no loss due to cuts)
- Gives ordering principle signal-like=small q
- Is additive event contributes w_i=log(1+s_i/b_i)

 Signal-like (bkg-like) outcome characterized by large (small) values of Q or by small (large) values of q

- LEP results from last LEPHI GGS wg combination: CERN-EP/2001-055 July 2001
- Based on the following publications:
- A: Phys.Lett. B485 2000 Preliminary
- D: Phys.Lett. B499 2001 Preliminary
- L: Phys.Lett. B517 2001 Final
- 0: Phys.Lett. B499 2001 Preliminary
- ALEPH has published final results: more information in the final part of the talk

	Integrated L pb ⁻¹				
E _{cm} GeV	Α	D	L	0	LEP
Full ≥189	629	610	627	599	2565
≥206 1RF margin	130	142	139	130	542

<u>5C fit P(χ²)=53%</u>

Minimum of LR @ Higgs mass 115.6 GeV

In agreement with what expected for SM Higgs

Most significant candidates

Candidates with s/b \geq 0.3 at M_H=115 GeV

Exper.	Chan.	m ^{rec} H	s/b M _H =115
Α	4-jet	114.3	4.7
Α	4-jet	112.9	2.3
Α	4-jet	110.0	0.9
L	Miss-En	115.0	0.5
0	4-jet	110.7	0.5
D	4-jet	114.3	0.5
Α	Lepton	118.1	0.5
Α	Tau-tau	115.4	0.4
Α	4-jet	114.5	0.4
Ο	4-jet	112.6	0.4
L	4-jet	108.3	0.3
D	4-jet	97.2	0.3

Most significant Candidates in 4-jet channel

measured Higgs mass=114.6 GeV mass resolution~4 GeV

M_H=115.6 GeV

 4 - j e t
 Miss - En
 All but

 (1 - CL_b)
 0.016
 0.40
 0.34

 CL_{s+b}
 0.74
 0.26
 0.19

Systematic checks: btag

btag calibrated with Zpeak data

MC IPs smeared until ϵ_{udsc} and ϵ_{b} agree with Data

agreement cross-checked with HE data

qq(g) background PRELIM, Stat.Err

- Systematic on b studied by 4 LEP experiments δbkg<10%
- Systematic effects included in C_b and C_s with convolution technique

- ALEPH final publication: preliminary sys. estimate (<0.2σ) confirmed (detailed in the following)
- "2σ effect" is robust against systematic effects

• Aleph has published final results:

Physics Letters B 526 (2002) 191

- Analyses unchanged (4-jet frozen in 1999)
- Full reprocessing of the data (+1 pb⁻¹)
- Final estimate of systematics
- Treatment of beam related background

Change in significance wrt previous publication

Update	NN signif. # s	CUT signif. # s
Previous publication	2.96*	3.06
Final processing	-0.14	+0.21
Additional MC stat	-0.14	-0.36
Beam background rejection	+0.14	+0.13
Final result	2.82	3.04

*Definition of $\#\sigma$ is different between A and LEP (one-sided vs double-sided Gaussian integral)

Impact on significance

Systematic source	CUT stream	NN Stream
MC stat	±0.12σ	±0.08σ
B-tag	±0.06σ	±0.08σ
Gluon splitting	±0.04σ	±0.04σ
Jet resolution	±0.07σ	±0.07σ
Discriminating Variables	±0.04σ	±0.06σ
α_{s} (4-jet rate)	±0.04σ	±0.06σ

- I f added in quadrature <0.2σ ٢
- Systematics included in C_b and C_s

with Gaussian convolution technique

3s effect confirmed in final publication

for both streams

Robust against bkg systematics

Conclusions: 1

The LEP era ended with an intriguing result:

 Interesting Higgs candidates found: mainly A - 4-jet channel

- LR minimum observed @ M_{H} =115.6 C_{s+b} = 44%
- Compatibility with backg-only hypot. 3.4% (~ 2σ)
- Final LEP combination: Summer Conferences (A,O, D)
- Since A results unchanged combined significance @ 115.6 GeV shouldn't change
- s+b or b-only hypothesis ?
 future experiment will clarify the nature of the effect: Tevatron , LHC

Be patient ... La Thuile 200? (?=8)

Conclusions: 2

- LEP* impact on Higgs boson very relevant
 - Before LEP 0 <M_H<~1 TeV

*data from CDF, DO, SLD and NuTEV included in EW indirect limit Caveat: bad χ^2/ndf of the EW fit not taken into account

Acknowledgment

Many thanks to all the members of the

LEPHI GGS working group

➤ A: correlation between discriminating-variables

- ≻ L:
- New 4-jet and re-optimization of missing-energy
- > Best candidate (Hvv): s/b=1.6 (Nov.) $\rightarrow 0.7$ (now)

> All : Additional 10-16 pb⁻¹ (only 1 new signif. Cand. O)

m _H ≈ 115 GeV	LEPC 3 / 11 / 2000 (P.Igo-Kemenes talk)	Now —	→ Reference
ALEPH DELPHI L3 OPAL	3.4 σ 1-CL _b =0.68 1.8 σ 1.3 σ	3.0 σ 1-CL _b =0.77 1.0 σ 1.3 σ	Phys. Lett. B495 (2000) Phys. Lett. B499 (2001) Submitted to Phys.Lett. Phys. Lett. B499 (2001)
Combined	2.9 σ	2.1 σ	CERN/EP-2001-055

MH=115 GeV

In addition :

Data reprocessed with refined calibration

> Many systematics studied in detail (e.g. detector performance, bkg's, threshold behavior)

*Note : all experiments have published but only L3 is final

The LEP results

	1 - CL _b	CL _{s+b}
Α	0.002	0.94
D	0.87	0.02
L	0.24	0.47
0	0.22	0.47
LEP	0.034	0.44
DLO	0.49	0.07
ALO	0.0037	0.83

Latest updates

Final processing

- Final Processing (and +1 pb⁻¹) 1 additional candidate selected by CUT:
 - M_H^{reco}=111.8 GeV H jets btag 0.97 0.87
 - Z jets btag 0.09 0.28 Weight at 115 GeV=0.25
- Increase CUT significance at 115 GeV by ~0.2σ
- 3 most significant NN candidates unaffected

Beam background rejection

 2nd most significant 4-jet cand. 22 GeV isolated low-θ deposit: beam-related bkg warning not simulated in MC !

- Select isolated clusters E>3 GeV |cosθ|>0.98
- Kinematic fit of the event to 3 hyp..
 - Norm = Cluster part of event \rightarrow standard 4-jet fit[χ^2 (norm)]
 - I SR = Cluster I SR photon fit rest of event to four-jets taking into account momentum imbalance caused hypothetical I SR photon [χ²(I SR)]
 - BB = Cluster beam induced background remove from event and fit rest of event to four-jets [χ²(beam)]
- Build R=min{ $\chi^2_{ISR'}\chi^2_{Norm}$ }/ χ^2_{BB}

- If R>2 remove the cluster from the event (and recompute all the relevant quantities)
- Only one candidate (b) affected in the data:
 - M_H^{reco} 112.8 -> 114.4 GeV
 - NN 0.996 ->0.997
- NN and CUT significances increased by ~0.1 σ

Reconstructed Higgs mass plot NN stream

33

s at LEP

Reconstructed Higgs mass plot Cut stream

Bkg. fluctuation or hint of a signal ?

The two hypothesis can be compared:

- a) Statistical fluctuation: 3.4% (x~2=7% "lookwhere-else effect": 115.6 GeV arbitrary !)
- b) Hint of a signal: 47%
- Internal Consistency DLO vs A: 7% (x~3~21% any of the 3 experiments could have a more significant "excess")
- With this statistics both hypotheses a) and b) are plausible: no scientific conclusion possible

