B (&C) PHYSICS AT LEP

MARTA CALVI UNIVERSITY OF MILANO BICOCCA AND INFN MILANO

ON BEHALF OF ALEPH, DELPHI, L3, OPAL COLLABORATIONS

Les Rencontres de Physique de la Vallee d'Aoste La Thuile, 3-9 March 2002

b Physics at LEP:

LEP1: √s~M_Z ⇒ ~0.8×10⁶ bb events/experiment with B⁺, B⁰, B_s and b-baryons
 bb is back-to-back topology ⇒ decay products of b and b well separated in space
 b is boosted: E_B~30 GeV ⇒ B flight ~2 mm: primary-secondary vertex separation soft decay particles boosted in the laboratory frame

$Z \rightarrow b\overline{b}$ (& $c\overline{c}$) Forward Backward Asymmetry

Asymmetry from interference between Vector and Axial-vector coupling of Z boson to quarks \Rightarrow precision measurement of sin² θ_{eff} and test of SM

$$A_{FB}^{0, b} = \frac{3}{4}A_{e}A_{b}$$
$$A_{f} = 2\frac{g_{V_{f}}/g_{A_{f}}}{1 + (g_{V_{f}}/g_{A_{f}})^{2}}$$

 A^{bb}_{FB} and A^{cc}_{FB} using leptons finalized by ALEPH (1991-95 statistics)

 Observed asymmetry is diluted by presence of cascade leptons

Separation of $b \rightarrow l^-$ from $b \rightarrow c \rightarrow l^+$ processes using kinematical and topological variables:

- lepton p, p_{\perp} ; event missing E
- lepton jet properties ($\Sigma E, \Sigma p_{||}, ...$)

Angular distribution in b and c enhanced regions • Extract: A^{bb}_{FB} , A^{cc}_{FB} and $\overline{\chi}$ (average $B^0\overline{B}^0$ mixing parameter) with maximum likelihood fit to: N_b , N_{uds} , N_{bl} and $Q_l \cos\theta_{thrust}$

Combining all energies and deriving pole asymmetries (including QCD and QED corrections):

$$A^{0,b}_{FB}$$
= 0.0998 ± 0.0040(stat.) ± 0.0017(syst.)
 $A^{0,c}_{FB}$ = 0.0732 ± 0.0053(stat.) ± 0.0037(syst.)

Combining with previous ALEPH measurements of A^{bb}_{FB} using inclusive b-hadron decays and A^{cc}_{FB} using reconstructed D mesons:

 $\sin^2 \theta_{eff} = 0.23188 \pm 0.00046$

To be compared with the word average result from all asymmetry measurements: $\sin^2 \theta_{eff} = 0.23149 \pm 0.00017$

$|V_{cb}|$ from exclusive decays $\overline{B}^0 \rightarrow D^{*+}l^-\overline{v}$

Study partial width dependence on w:

$$w = (v_B \cdot v_{D^*}) = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$
$$v_B, v_D \colon B^0 \text{ and } D^{*+} \text{ 4-velocities}$$
$$q^2 \colon \text{ momentum transfer from } B^0 \text{ to } N \text{ system}$$

Using HQET:
$$\frac{d\Gamma}{dW} = K(W) F_{D^*}^2(W) |V_{cb}|^2$$

K(w): known kinematic factor $F_{D^*}(w)$: hadronic form factor

In the heavy quark limit $(m_b \rightarrow \infty)$ at zero recoil: $F_{D^*}(1) \rightarrow 1$

Corrections for finite m_q and QCD give: $F_{D^*}(1) = 0.91 \pm 0.04$

Measurements:

Use an expansion of $F_{D^*}(w)$ around w=1Fit $d\Gamma/dw$ in 1.< w < 1.5 to extract $F_{D^*}(1)|V_{cb}|$ and slope \Rightarrow need fairly constant reconstruction efficiency about w=1

DELPHI measurement of V_{cb} using $\overline{B}^0 \rightarrow D^{*+}l^- \overline{\nu}$

Exclusive reconstruction of $D^{*+} \rightarrow D^0 \pi^+$ ■ Efficiency for q² = (p_B - p_{D*})² reconstruction:

$F_{D^*}(w)$ expressed as a function of:

 $\begin{array}{l} R_1(w), R_2(w) \quad \text{ratios of HQET form factors measured by CLEO} \\ h_{A1}(w) = h_{A1}(1) \left[1 - 8\rho^2_{A1} z + (53 \ \rho^2_{A1} - 15) \ z^2 - (231\rho^2_{A1} - 91) \ z^3\right] \quad \text{axial form factor} \\ \text{where } \rho^2_{A1} \text{ is the slope parameter at zero recoil and } z = (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2}) \\ (Caprini, Lellouch, Neubert, Nucl. Phys. B530(1998) 153.) \end{array}$

DELPHI result (preliminary):

$$F_{D^*}(1) | Vcb | = 0.0357 \pm 0.0024 \pm 0.0019$$

$$\rho^2_{A1} = 1.23 \pm 0.21 \pm 0.32$$

BR(
$$\overline{B}^{0} \rightarrow D^{*+} \Gamma \nu$$
) = (5.15 ± 0.28 ± 0.27) %

Systematics uncertainties:

	Source		<i>F(1)</i> / <i>V</i> _{<i>cb</i>} / (%)	$\rho^2_A(\%)$	BR (%)
	External parameters	rates, BR, b fragmentation	2.4	0.5	4.6
	Detector performance	q ² resolution	2.8	9.0	0.2
		q ² acceptance	1.7	5.7	0.4
		track, lepton id, etc.	1.2	0.5	2.3
	Signal modelling	$R_1(w), R_2(w)$	0.9	22.8	-
	Background	D** states	2.8	7.3	0.6
	modelling	$\overline{B}_{d} \rightarrow D^{*}X\tau\overline{\nu}, P(c \rightarrow D^{*}X\tau)$	0.5	3.3	1.2
	TOTAL systematic Statistical		5.2	26.	5.3
			6.7	17.	5.4

Background rejection from presence of other particles at the b-vertex in addition to D^0, π^+, I^- :

Residual background from $b \rightarrow D^{*+}X Iv$:

- total rate fitted on data: $BR(b \rightarrow D^{*+}X h) = (0.64 \pm 0.10)\%$ compatible with expectations
- relative fractions of different states using model of A.K.Leibovich, Z.Ligeti et al.

LEP Average $/V_{cb}$ / from $\overline{B}^0 \rightarrow D^{*+}l^- \overline{\nu}$

Experimental results corrected by LEP V_{cb} WG to common inputs and same form factor parametrization

$$F(1) |V_{cb}| = (38.2 \pm 0.5_{stat.} \pm 0.9_{syst.}) \times 10^{-3}$$
$$\rho_{A^{1}}^{2} = 1.49 \pm 0.05_{stat.} \pm 0.13_{syst.}$$

Using $F(1) = 0.91 \pm 0.04$

$$V_{cb}|^{excl} = (42.0 \pm 1.1_{exp.} \pm 1.8_{theo}) \times 10^{-3}$$

Inclusive Vcb at LEP

$$\Gamma_{sl} (b \rightarrow c \Gamma \overline{v}) = |V_{cb}|^2 \times f (param.) = BR_{sl} / \tau_b$$

Semileptonic BR, LEP averages:

BR($b \rightarrow X \Gamma \overline{v}$) = (10.65 ± 0.23) × 10⁻² BR($b \rightarrow u \Gamma \overline{v}$) = (0.17 ± 0.05) × 10⁻²

Average b lifetime:

 $\tau_b = 1.564 \pm 0.014 \text{ ps}$

 $\Gamma_{sl}^{LEP}(b \to c \Gamma v) = (0.441 \pm 0.010) \times 10^{-10} \text{ MeV}$

$$|V_{cb}|^{incl} = (41.8 \pm 0.5 \ (exp.: BR, \tau) \pm 0.5 \ (exp. determ. of HQET param. \Lambda, \lambda_1 by CLEO) \pm 0.8 \ (theory: \alpha_s, 1/m_b^3) \) \times 10^{-3} *$$

To be compared with: $\Gamma_{sl}^{CLEO}(b \rightarrow c \Gamma \overline{v}) = (0.427 \pm 0.020) \times 10^{-10} \text{ MeV}$

(*) Using: $|V_{cb}| = 41.35 \times [(BR_{sl}/0.105) \times (1.6 \text{ ps/}\tau_b)]^{1/2} \times 10^{-3}$ ($\rightarrow CKM$ workshop CERN)

B Physics at LEP

Marta Calvi, La Thuile 3-9 March 2002 /11

b Hadron Lifetime Measurements

Different techniques used at LEP for B^{0} , B^{+} , B_{s} and b-baryons lifetime measurements

DELPHI measurement of B^+ and B^0 lifetimes

Averages of b hadron lifetimes (B lifetime WG)

Lifetime Ratios

In agreement with theory expectations, except for b-baryons

Inclusive b Decays to Wrong Sign Charmed Mesons

 $B \rightarrow D \overline{D} X$ gives a measurement of number of charms in b decays: $n_c \approx 1 + B(b \rightarrow c \overline{c} s)$

DELPHI measurement of wrong sign charm

c charge → Decay products from exclusive reconstruction: D⁰→K⁻π⁺, D⁺→K⁻π⁺π⁺,D⁺→ ϕ π⁺

b charge \rightarrow

Sample	N. wrong sign	N. right sign
$D^0 \rightarrow K^- \pi^+$	383 <u>+</u> 81	3396 <u>+</u> 110
$D^+ \rightarrow K^- \pi^+ \pi^+, \pi^+$	186 <u>+</u> 86	1811 <u>+</u> 101
$D_{s}^{+} \rightarrow \phi \pi$	286 <u>+</u> 42	221 <u>+</u> 39

• From wrong sign to right sign ratios:

$$B(b \rightarrow \overline{D} X) = 9.3 \pm 1.7 (stat.) \pm 1.3 (syst.) \pm 0.4 (B) \%$$

 $B(b \rightarrow D_s^- X) = 10.1 \pm 1.0 (stat.) \pm 0.6 (syst.) \pm 2.8 (B) \%$

 \rightarrow error from $B(b \rightarrow D_s^{\pm} X)$

Previous results:

ALEPH: $B(b \rightarrow D^0 \overline{D}^0, D^0 D^-, D^+ \overline{D}^0 (X)) = 7.8 \pm 1.9(stat.) \pm 1.6(syst.) \pm 0.4(B) \%$ $B(b \rightarrow D^0 D_s^-, D^+ D_s^-(X)) = 13.1 \pm 2.4(stat.) \pm 1.7(syst.) \pm 3.6(B) \%$ and in agreement with total D_s production at Y(4S)

D_s decay constant measurement

In the SM:

$$B(D_s \to l\upsilon) = \frac{G_F^2}{8\pi} \tau_{D_s} f_{D_s^2}^2 |V_{cs}|^2 M_{D_s} m_l^2 (1 - m_l^2 / m_{D_s}^2)$$

• Test of f_{D_s} Lattice QCD calculations

• Measuremets are also a way to obtain the B decay constant f_B

ALEPH measurement of the Branching fraction of $D_s \rightarrow \tau \nu$ ($\tau \rightarrow e\nu, \tau \rightarrow \mu\nu$) and $D_s \rightarrow \mu\nu$.

- Reconstruct D_s candidates in cc events: identified lepton, large missing energy and kinematic fit to reconstruct the D_s momentum
- Two discriminant variables used to separate signal against semileptonic b and c decays background (p^{Ds}, pt^{lepton}, Ds-lepton angle etc)

• From branching ratios in both $D_s \rightarrow \tau v$ and $D_s \rightarrow \mu v$ channels extract:

Purity in $D_s \rightarrow \mu \nu$ channel

CONCLUSIONS

~800.000 bb and ~ 700.000 cc pairs /experiment collected at LEP 1

Recent results presented on:

A^{bb}_{FB}, A^{cc}_{FB}
CKM parameter V_{cb}
Lifetimes of b hadrons
Charm production in b decays
D_s decay contant

Other analysis are ongoing and more results are still coming