

Les Rencontres de Physique de la Vallée d'Aoste

QCD Studies at HERA

Ian C. Brock Bonn University representing the ZEUS and H1 Collaborations

HERA and QCD

- Talk could/should cover >50% of HERA I physics!
- Have to be selective

QCD Prejudices
Nice theory
Hard to be precise!
Quarks produced, but hadrons seen

- Experiments
 - Data has few % accuracy for a number of measurements
- NLO QCD
 - Theory getting to same level in some regions
 - Boldly going to places where no theory has gone before!
 - Factorisation and renormalisation scale uncertainties?
 - NNLO QCD
 - First calculations coming
 - We want more!

QCD Studies at HERA - Ian C. Brock

•

Topics

- Parton Density Functions
 - $-F_2$, F_L and xg(x)
- Determination of α_s
 - From PDFs
 - High E_T inclusive jets and dijets
 - Jet substructure

- 3 jet production
- Dijets in photoproduction
 - Direct vs. resolved photons
 - Comparison with NLO QCD predictions
- Data vs. theory at highest *Q*²
- Heavy flavour production

HERA Kinematics

- Lots of interdependent variables used!
- *s: e-p* c.m. energy
- $Q^2 = -q^2$: 4-momentum transfer squared
- x: fraction of proton momentum carried by quark
- *y*: inelasticity parameter
- *W*: γ-*p* c.m. energy

$$F_2 \text{ Results}$$

$$\frac{d^2 s}{dx \, dQ^2} = \frac{2 p a^2}{x Q^4} \left(Y_+ F_2 - y^2 F_L \pm Y_- x F_3 \right)$$

$$y = Q^2 / x s \qquad Y_{\pm} = \left(1 \pm \left(1 - y \right)^2 \right)$$

- Structure functions:
 - $-F_{2}$
 - *F_L*: longitudinal component
 - $-xF_3$: small for $Q^2 = M_Z^2$

Fit of PDFs

- Fit HERA data on F_2
- Include best fixed target data
- Have to parametrise PDFs

$$f = p_1 x^{p_2} (1 - x)^{p_3} (1 + p_4 \sqrt{x} + p_5 x)$$

 Do fits with fixed and free *a*_s

08/03/2002

ZEUS and H1 Fits

- ZEUS
 - ZEUS + BCDMS, E665, NMC
 - Start at $Q_0^2 = 7 \,\mathrm{GeV}^2$
 - $p_4 = 0$ plus additional constraints
 - Heavy quarks: RT variable flavour number scheme

- H1
 - H1 + BCDMS
 - Start at $Q_0^2 = 4 \,\mathrm{GeV}^2$
 - $p_4 = 0$ for the gluon
 - Heavy quarks: Fixed flavour number scheme

NLO DGLAP equations used

HERA Fits

- Over very large range ZEUS and H1 data and fits agree very well
- Some differences at small x
- Limited statistics at large Q^2

Errors on PDFs

- Fits now calculate errors on PDFs
- Correlations between experimental errors taken into account
- Low x and high Q² regions have largest errors

H1 and ZEUS Gluon Density

- Fit of gluon distribution
- See evolution of gluon density as a function of Q²
- Can overlay H1 and ZEUS distributions
- General agreement differences probably due to:
 - heavy flavour scheme
 - -xg(x) parameterisation
- a_s correlation clearly visible in error on xg(x)

F_L Results

- Really need different s $Q^2 = sxy$
- ZEUS used ISR events
- H1 measure σ_r; use F₂
 from lower y to predict
 value at high y (low x)
 - DGLAP gives very consistent picture
 - Works best at higher Q^2

$$\frac{Q^4 x}{2\mathbf{p}\mathbf{a}^2 Y_+} \mathbf{g} \frac{d^2 \mathbf{s}}{dx \, dQ^2} = \mathbf{s}_r = F_2 - \frac{y^2}{Y_+} F_L$$

F_L using derivative

- Can also use $\partial s / \partial \ln y$
 - Works best at low Q^2
 - F_2 and F_L contributions similar
- Plot ∂s/∂ln y
 as a function of y for
 different Q² ranges

Lower Limit of pQCD

- Use PDF fits and DGLAP evolution
- See that QCD description only fails below about 0.8 GeV²
- Same effect seen in F_L determination value physical for $Q^2 > 0.8 \text{ GeV}^2$

Measurements with Jets

Breit frame

 $x_{Bi}\vec{p} = -1/2\vec{q}$

00000

- Often made in Breit frame
- Breit frame defined as

 $2x\vec{p} + \vec{q} = 0$

Related to γ-p c.m. by a longitudinal boost

z-boost

L)

+ p,

08/03/2002

 $\mathbf{x} \vec{p} = -\vec{q}$

00000

gluon-photon center-of-mass frame

QCD Studies at HERA - Ian C. Brock

η_{Breit,2}

 \sim

η_{Breit,1}

2n

Jets in PQCD

- Use typical clustering algorithms to define jets
- How far can one lower y_{cut} and still describe jets with pQCD?
- Surprisingly far 30% of events in DIS can be classified as having 2 or more jets with y_{cut}~ 0.001

Jets in Breit frame – H1 and ZEUS

- Jets with significant E_T
 usually produced via
 QCD Compton or
 boson-gluon fusion
 process.
- Production rate clearly depends on α_s, but data mostly sensitive to

$\boldsymbol{a}_{s} \cdot xg(x)$

 Breit frame provides good separation from proton remnant

08/03/2002

Jet Cross Section

- Select DIS events with high E_T jets
- Compare inclusive jet cross sections with NLO QCD prediction
- 2 scales: $Q^2 \& E_T$
- Good agreement seen
- How much should scale be varied? A factor of 2?

Inclusive Jet Cross Sections

•

Can determine $\alpha_{\rm S}$ in different $E_{T,jet}$ regions or as a function of E_T

 Extraction reliable for Q² > 500 GeV² or E_T > 15 GeV
 Running seen

in a single experiment

QCD Studies at HERA - Ian C. Brock

Theory error ~5% due to renormalisation and factorisation scale uncertainty

08/03/2002

ZEUS Dijet Cross Sections

- Cross section for single and dijet production
- Ratio of dijet to single jet cross section proportional to α_s

08/03/2002

H1 Dijet Cross Sections

- Dijet cross section with different E_T cuts
- Different jet algorithms compared at high Q²
- NLO is clearly needed
- **a**_S extraction uses $150 \le Q^2 \le 5000 \text{GeV}^2$

Jet Substructure - ZEUS

- Look for jet-like components inside a jet
- Find jets in lab system to keep large single jet sample
- Subjets calculated in NLO
- Pick a region where parton/hadron corrections are < 15%

Jet Substructure

- Measurements are sensitive to α_s
- α_s values are consistent in different E_T regions
- Systematic errors mainly from factorisation and renormalisation scale uncertainty

ZEUS α_S Summary

- Comparison of different ZEUS measurements shows good agreement between them all
- In jet measurements theory error dominates
- Needs theoretical input on scale uncertainty (NNLO calculations)

Compare with PDG and Bethke worldaverageHERAα_s Measurements

- Good agreement
- HERA results are competitive
- Running of α_S seen in single experiment
- Influence on world average depends on reducing theoretical uncertainties

Three Jets – H1

- Look at 3 jet cross section as a number of variables
- Cross section is proportional to a²/_s in lowest order
- Again well described by NLO calculations

Dijets in Photoproduction

- Select events with 2 high E_T jets
- Measure cross section as a function of:
 - $-E_T$
 - $-x_{g}$
 - $-x_p$
- NLO clearly needed especially at high x_g

High Q²

- Clearly see effect of W/Z exchange in cross section
- Newest HERA data extend kinematic range – good agreement with expectation seen
- QCD + EW effects completely explain data
- More statistics + longitudinal lepton polarisation coming with HERA II

Quark mass providesCharm and Gluonshard scale

Boson-gluon fusion is main production mechanism

- Charm production directly proportional to gluon content
- With current statistics PDF fits still do a better job

b Quarks at HERA

- c quark production cross section in marginal agreement with expectations
- *b* quark production 2 to 3 orders of magnitude smaller than *c* (c.f. LEP)
- Should be calculable in pQCD, b should be better than c as scale is harder

- Use semileptonic muon decay mode to identify b's
 - ZEUS also uses electrons
- H1 can use silicon microvertex detector as well

08/03/2002

H1 Results

- Combine muon tag with impact parameter
- S/B about 1:1
- Clear *b* signal

08/03/2002

QCD Studies at HERA - Ian C. Brock

Muons / 0.2 GeV 10

0

HF in Photoproduction + DIS

- Signal seen in photoproduction and DIS
- Ratio of data to expectation about a factor of 2 too high!
- 2-3 σ effect

08/03/2002

- ZEUS result is consistent
- Smaller discrepancy if *b* excitation included
- Really need HERA II + microvertex detectors

Conclusions

- HERA data provides many precise tests of pQCD
- NLO QCD reaches places that no other theory can reach!
- NLO predictions show remarkably good agreement with measurements over a huge kinematic range
- Errors due to scale uncertainties often dominate
- NNLO calculations needed

- Different α_s results are precise and agree well with each other and world average
- *b* quark production cross section is still a problem
- Heavy quark results will benefit from HERA II lumi and microvertex detectors
- HERA II programme with 5x lumi + polarised lepton beams getting underway
- 1 fb⁻¹ per experiment by 2006

α_{s} - the numbers

ZEUS incl. jets	$0.1190 \pm 0.0017(\text{stat})_{-0.0023}^{+0.0049}(\text{exp})_{-0.0026}^{+0.0026}(\text{th})$
ZEUS NLO fit	$0.1172 \pm 0.0008(\text{stat}) \pm 0.0054(\text{syst})$
ZEUS Subjets	$0.1185 \pm 0.0016(\text{stat})_{-0.0048}^{+0.0067}(\text{exp})_{-0.0071}^{+0.0089}(\text{th})$
ZEUS Jet shape	$0.1179 \pm 0.0014(\text{stat})_{-0.0065}^{+0.0054}(\text{exp})_{-0.0073}^{+0.0094}(\text{th})$
ZEUS dijets	$0.1166 \pm 0.0019(\text{stat})^{+0.0024}_{-0.0033}(\text{exp})^{+0.0057}_{-0.0044}(\text{th})$
H1 incl. Jets	$0.1186 \pm 0.0030(\exp)^{+0.0039}_{-0.0045}(\text{th})$
H1 NLO-QCD fit	$0.1150 \pm 0.0017(\exp)^{+0.0009}_{-0.0005}(\text{model}) \pm 0.005(\text{scale})$
PDG 2000	0.1181 ± 0.002
Bethke	0.1184 ± 0.0031