Rare B decays at BaBar

Anders W. Borgland
Lawrence Berkeley National Laboratory
On behalf of the BaBar collaboration

La Thuile, March 3-9 2002

Introduction

- Previous BaBar results based on data taken in 1999-2000 (Run 1).
- Currently updating analyses with data taken in 2001 (Run 2).
- Some analyses are ready, some are unfortunately not

Outline

- General analyses techniques
- Radiative Penguins:
- $B \longrightarrow K^{*} \gamma$
$-B \longrightarrow \rho \gamma$
$-B \longrightarrow K^{(*)} l^{+} l^{-}$
- Conclusions

$m_{E S}-\Delta E$ plane

- $e^{+} e^{-} \longrightarrow \Upsilon(4 S) \longrightarrow B \bar{B}$
- B mesons nearly at rest in the $\Upsilon(4 S)$ rest frame: $p^{*}=325 \mathrm{MeV}$ $(\beta \gamma=0.55)$.
- Beam energy is very well known.
- Define two new (largely uncorrelated) variables in the $\Upsilon(4 S)$ rest frame.
- Energy substituted mass $m_{E S}$:

$$
m_{E S}=\sqrt{E_{\text {Beam }}^{* 2}-\vec{p}_{B}^{*}}{ }^{2} \quad \sigma \approx 2.5 \mathrm{MeV}
$$

- Energy difference:

$$
\Delta E=E_{B}^{*}-E_{\text {Beam }}^{*} \quad \sigma \approx 20-40 \mathrm{MeV}
$$

Signal box

- Define signal box and (grand) sidebands in $m_{E S}-\Delta E$ plane.
- Blind analysis: Content of signal box unknown until all selection criteria are fixed.

Fitting

- Cut-and-count analysis:
- Use small signal box with well known efficiencies.
- Optimize selection criteria wrt the signal box.
- Maximum likelihood fit:
- Fit over a much larger region of the $\Delta E-m_{E S}$ plane.
- Fit signal and (all) background components.
- Higher efficiency / sensitivity, but more complicated PDFs (that are varied over a large region).
- Use cut-and-count analysis as baseline.
- Selection criteria determined using background and signal MC, off resonance data and side band data.

$B \longrightarrow K^{*} \gamma$ and $\rho \gamma$: Theoretical Motivation

- Examples of radiative Penguin processes: $b \longrightarrow s, d \gamma$
- $B \longrightarrow K^{*} \gamma(\rho \gamma)$ is sensitive to $V_{t s}\left(V_{t d}\right)$.
- But also sensitive to new physics enhancing branching ratios and/or CP asymmetries (from $<1 \%$ up to 20% (Kagan \& Neubert)).
- Use (Ali \& Parkhomenko) ratio to cancel (long distance QCD) uncertainties (cf B_{d} and B_{s} mixing):

$$
\frac{B r(B \longrightarrow p \gamma)}{\operatorname{Br}\left(B \longrightarrow K^{*} \gamma\right)}=\left(\frac{1}{2}\right)\left(\frac{\left|V_{t d}\right|}{\left|V_{t s}\right|}\right)^{2} \quad \Omega_{(\text {Phase space })} \quad \zeta_{(\text {Form Factors })}^{2}[1+\Delta R]
$$

where ($1 / 2$) is from isospin, $\zeta=0.76 \pm 0.06$ (z.Phys. C63, 1994) and $\Delta R<0.15$.

- Can extract $\left(\frac{\left|V_{t d}\right|}{\left|V_{t s}\right|}\right)^{2}$ with a theoretical uncertainty of 20%.

$B \longrightarrow K^{*} \gamma$: Reconstruction

- Based on run 1 data set: $20.7 \mathrm{fb}^{-1}$ (2.6) on (off) resonance.
- K^{*} reconstruction modes:
- $K^{* 0} \longrightarrow K^{+} \pi^{-}$
$-K^{* 0} \longrightarrow K_{s}^{0} \pi^{0}$
- $K^{*+} \longrightarrow K^{+} \pi^{0}$
$-K^{*+} \longrightarrow K_{s}^{0} \pi^{+}$
- Require a high energy photon: $1.5<E_{\gamma}<4.5 \mathrm{GeV}$

$$
2.3<E_{\gamma}^{*}<2.85 \mathrm{GeV}
$$

- Veto photons from π^{0} and η.
- Require identified kaon in the DIRC: 87% efficient for the signal and reduces the combinatorial background by a factor 4 .

$B \longrightarrow K^{*} \gamma$: Backgrounds

- Main background comes from continuum $q \bar{q}$ production with photon from ISR or π^{0} and η decays. Other B backgrounds negligible.
- Use event topology to suppress jet like continuum background from isotropic $B \bar{B}$: thrust, B direction and K^{*} helicity.

$B \longrightarrow K^{*} \gamma: \Delta E^{*}$

- Require: -200 (-225) $\mathrm{MeV}<\Delta E^{*}<100$ (125) MeV
- (Single) photon candidate rescaled to $\Delta E^{*}=0$:
- Removes tail in $m_{E S}$ resolution.
- Improves the resolution from 2.7 (2.9) MeV to 2.5 (2.6) MeV for B^{0} and B^{+}respectively.
- Signal yields obtained from fitting $m_{E S}$ distributions.

$B \longrightarrow K^{*} \gamma$: Results

Mode	Efficiency	Nbr signal events	$\operatorname{Br}\left(B \longrightarrow K^{*} \gamma\right) \times 10^{-5}$
$K^{+} \pi^{-}$	14.0%	135.7 ± 13.3	$4.24 \pm 0.41 \pm 0.22$
$K_{s}^{0} \pi^{0}$	1.4%	14.8 ± 5.6	$4.10 \pm 1.71 \pm 0.42$
$K^{+} \pi^{0}$	3.9%	28.1 ± 6.6	$3.01 \pm 0.76 \pm 0.21$
$K_{s}^{0} \pi^{+}$	4.3%	57.6 ± 10.4	$5.52 \pm 1.07 \pm 0.38$

$B \longrightarrow K^{*} \gamma$: Combined results

- Combined results (to appear in PRL):

$$
\begin{gathered}
\operatorname{Br}\left(B^{+} \longrightarrow K^{*+} \gamma\right)=(3.83 \pm 0.62 \pm 0.22) \times 10^{-5} \\
\operatorname{Br}\left(B^{0} \longrightarrow K^{* 0} \gamma\right)=(4.23 \pm 0.40 \pm 0.22) \times 10^{-5}
\end{gathered}
$$

- Define CP-violating asymmetries $A_{C P}$:

$$
A_{C P}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{*} \gamma\right)-\Gamma\left(B \rightarrow K^{*} \gamma\right)}{\Gamma\left(\bar{B} \rightarrow K^{*} \gamma\right)+\Gamma\left(B \rightarrow K^{*} \gamma\right)}
$$

- We obtain at 90% C.L.:

$$
-0.170<A_{C P}\left(B \rightarrow K^{*} \gamma\right)<0.082
$$

- This analysis is currently being updated with Run 2 data.

$B \longrightarrow \rho \gamma$: Current situation

- Experimentally the mode has not been seen!
- Current situation:

	$B r\left(B^{0} \longrightarrow \rho^{0} \gamma\right)$	$\operatorname{Br}\left(B^{+} \longrightarrow \rho^{+} \gamma\right)$
Ali and Parkhomenko	$(0.49 \pm 0.21) \times 10^{-6}$	$(0.85 \pm 0.40) \times 10^{-6}$
Bosh and Buchalla	$0.76_{-0.23}^{+0.26} \times 10^{-6}$	$1.53_{-0.46}^{+0.53} \times 10^{-6}$
CLEO	$<1.7 \times 10^{-5}$	$<1.3 \times 10^{-5}$
BELLE	$<0.99 \times 10^{-5}$	$<1.06 \times 10^{-5}$

$B \longrightarrow \rho \gamma$: Preliminaries

- Based on Run 1 and Run 2 data set: 56 (6.3) fb^{-1} on (off) resonance
- Decay modes: $\rho^{0} \longrightarrow \pi^{+} \pi^{-}$and $\rho^{+} \longrightarrow \pi^{+} \pi^{0}$.
- Analysis similar to $K^{*} \gamma$, but:
- Smaller branching fraction (x50) and wider resonance (x3).
- Less help from Particle IDentification to suppress combinatorial background (continuum pions).
- $K^{*} \gamma$ with kaon misidentified as a pion has similar kinematics and will be a background. A new pion selector (80%) has been introduced specifically to reduce the $K^{*} \gamma$ background to $\sim 1 \%$.
- Unobserved mode $B^{+} \longrightarrow \rho^{+} \pi^{0}$ will be a significant systematic uncertainty for the $\rho^{+} \gamma$ mode.
- Blind analysis.

$B \longrightarrow \rho \gamma$: Background suppression

- Continuum suppression:
- Vertex separation between $\rho^{0} \gamma$ candidate and the rest of the event.
- Net flavour production in the rest of the event.
- Event shape variables: thrust, polar angle, helicity, Fox-Wolfram $R^{\prime} 2$.
- 18 energy cones around the photon.
- Combined into a neural net.
- Reduces backgrounds / improves sensitivity by up to a factor two.
- Net trained on continuum background, but also efficient for rejecting combinatorial $B \bar{B}$ background.
- Working on improving the net flavour production separation and also vertex separation for $\rho^{+} \gamma$ mode.

```
B\longrightarrow\rho\gamma:\Deltaz
```


ΔZ Signal

ΔZ Background

$B \longrightarrow \rho \gamma$: Neural Net output

$B \longrightarrow \rho \gamma$: Cuts and Fit

- Multiple candidates: Use ΔE^{*} and $p_{\rho, C M S}$ to select the best candidate -2.8% of signal candidates are wrongly selected.
- Subsequent helicity angle cut still useful to reject $B^{+} \longrightarrow \rho^{+} \pi^{0}$ ($\sin ^{2} \theta$ vs. $\cos ^{2} \theta$ - reduces background by a factor 2 with a 10% signal loss).
- (Single) photon energy rescaling symmetrizes and improves $m_{E S}$ resolution by 1 MeV to 2.5 MeV .
- Fit:
- Cut on neural net output to reduce continuum and $B \bar{B}$ combinatorial background.
- Then do a Maximum Likelihood fit with $m_{E S}, \Delta E^{*}$ and M_{ρ}.
- Only fit $B \longrightarrow \rho \gamma$ signal and continuum background.
- Estimate B background effects with Toy MC study.

$B \longrightarrow \rho \gamma$: Efficiencies and Fit bias

- Signal efficiencies:
- $\rho^{0} \gamma: 11.7 \%$
- $\rho^{+} \gamma: 9.3 \%$
- Fit region: $-300<\Delta E^{*}<300 \mathrm{MeV} \quad 5.2<m_{E S}<5.29 \mathrm{GeV}$
- Signal PDFs fixed to $K^{*} \gamma$ values while floated for the continuum background (except ρ resonant fraction).
- B decay background effect on signal yield:
- Systematic shift when B background is ignored in the fit.
- $\rho^{0} \gamma: 0.5 \pm 0.5$ events.
- $\rho^{+} \gamma: 2.5 \pm 2.5$ events.

$B \longrightarrow \rho \gamma$: Results

$B^{0} \longrightarrow \rho^{0} \gamma$
$B^{+} \longrightarrow \rho^{+} \gamma$

$B \longrightarrow \rho \gamma:$ Results

- Results from the fit:
- $\rho^{0} \gamma: 3.1 \pm 4.2$ signal events
- $\rho^{+} \gamma: 4.6 \pm 5.8$ signal events
- Upper limits:
- We do not subtract B background bias to calculate upper limits.
- Include 15\% systematics (10\% from ρ resonant fraction).

$$
\begin{aligned}
& \operatorname{Br}\left(B^{0} \longrightarrow \rho^{0} \gamma\right)<1.5 \times 10^{-6} \text { at } 90 \% \text { C.L. } \\
& \operatorname{Br}\left(B^{+} \longrightarrow \rho^{+} \gamma\right)<2.8 \times 10^{-6} \text { at } 90 \% \text { C.L. }
\end{aligned}
$$

- Close to theoretical predictions.

$B \longrightarrow \rho \gamma: \mathbf{C K M}$

For illustrative purposes only - No theoretical errors!

$B \longrightarrow K^{(*)} l^{+} l^{-}$

- ElectroMagnetic and Z penguins and WW box diagram contributions.
- EM penguin seen in $B \longrightarrow K^{*} \gamma$.
- SM calculations have large uncertainties because of strong interactions (form factors).
- Expected to be at the $0.57-2.3 \times 10^{-6}$ level (A. Ali et al.)
- Sensitive to new physics.

$B \longrightarrow K^{(*)} l^{+} l^{-}$: Modes

- Based on Run 1 data set.
- Modes:

$$
\begin{aligned}
& -B^{+} \longrightarrow K^{+} l^{+} l^{-} \\
& -B^{0} \longrightarrow K_{s}^{0} l^{+} l^{-} \\
& -B^{+} \longrightarrow K^{*+} l^{+} l^{-} \\
& -B^{0} \longrightarrow K^{* 0} l^{+} l^{-}
\end{aligned}
$$

where $l=e, \mu$, and $K^{* 0} \longrightarrow K^{+} \pi^{-}$and $K^{*+} \longrightarrow K_{s}^{0} \pi^{+}$.

- Signal estimated with an unbinned Maximum Likelihood fit in the $m_{E S}-\Delta E$ plane.
- Blind analysis.

$B \longrightarrow K^{(*)} l^{+} l^{-}$: Background suppression

- Combinatorial background from $B \bar{B}$: Likelihood ratios
- Vertex probabilities
- Dilepton separation
- Missing energy
- Continuum background: Fisher discriminant
- Event topology variables
- $m_{K l}$ to discriminate against semileptonic D decays

$B \longrightarrow K^{(*)} l^{+} l^{-}$: Peaking Backgrounds

- Peaking background from:
- $B \longrightarrow J / \psi K^{*}$ where $J / \psi \rightarrow l^{+} l^{-}$
$-B \longrightarrow \psi(2 S) K^{*}$ where $\psi(2 S) \rightarrow l^{+} l^{-}$
- Veto in the $\Delta E-m_{l^{+} l^{-}}$plane
- $K-\mu$ reassignment veto

$B \longrightarrow K^{(*)} l^{+} l^{-}$: Results

$B \longrightarrow K^{(*)} l^{+} l^{-}:$Results

- Efficiencies range from $5.8 \%\left(K^{*+} \mu^{+} \mu^{-}\right)$to $17.5 \%\left(K^{+} e^{+} e^{-}\right)$.
- Upper limits including systematics (submitted to PRL):

$$
\begin{aligned}
& \operatorname{Br}\left(B \longrightarrow K l^{+} l^{-}\right)<0.50 \times 10^{-6} \text { at } 90 \% \text { C.L. } \\
& \operatorname{Br}\left(B \longrightarrow K^{*} l^{+} l^{-}\right)<2.9 \times 10^{-6} \text { at } 90 \% \text { C.L. }
\end{aligned}
$$

- Close to theoretical prediction!
- Currently being updated with Run 2 data.

Conclusions

- First results on $B \longrightarrow \rho \gamma$ based on full Run 1 and Run 2 data set:

$$
\begin{gathered}
\operatorname{Br}\left(B^{0} \longrightarrow \rho^{0} \gamma\right)<1.5 \times 10^{-6} \text { at } 90 \% \text { C.L. } \\
\operatorname{Br}\left(B^{+} \longrightarrow \rho^{+} \gamma\right)<2.8 \times 10^{-6} \text { at } 90 \% \text { C.L. }
\end{gathered}
$$

- Close to SM predictions with:

$$
\begin{aligned}
& \operatorname{Br}\left(B \longrightarrow K l^{+} l^{-}\right)<0.50 \times 10^{-6} \text { at } 90 \% \text { C.L. } \\
& \operatorname{Br}\left(B \longrightarrow K^{*} l^{+} l^{-}\right)<2.9 \times 10^{-6} \text { at } 90 \% \text { C.L. }
\end{aligned}
$$

- BaBar is busy updating Run 1 based results with Run 2 data.
- Will soon have new results on: $B \longrightarrow K^{(*)} l^{+} l^{-}, h^{+} h^{-}, K^{*} \gamma \ldots .$.
- New analyses coming along: $B \longrightarrow \omega \gamma, \pi^{0} \pi^{0}$.....
- We are on our way to $100 \mathrm{fb}^{-1}$ by the summer.

