Rare B decays at BaBar

Anders W. Borgland Lawrence Berkeley National Laboratory On behalf of the BaBar collaboration

La Thuile, March 3-9 2002

Introduction

- Previous BaBar results based on data taken in 1999-2000 (Run 1).
- Currently updating analyses with data taken in 2001 (Run 2).
- Some analyses are ready, some are unfortunately not

- General analyses techniques
- Radiative Penguins:
 - $\ B \longrightarrow K^* \ \gamma$
 - $B \longrightarrow \rho \gamma$
 - $B \longrightarrow K^{(*)} l^+ l^-$
- Conclusions

$$m_{ES} - \Delta E$$
 plane

- $e^+e^- \longrightarrow \Upsilon(4S) \longrightarrow B\bar{B}$
- B mesons nearly at rest in the $\Upsilon(4S)$ rest frame: $p^*=325~{\rm MeV}$ $(\beta\gamma=0.55).$
- Beam energy is very well known.
- Define two new (largely uncorrelated) variables in the $\Upsilon(4S)$ rest frame.
- Energy substituted mass m_{ES} :

$$m_{ES} = \sqrt{E_{Beam}^{*2} - \vec{p}_B^{*2}} \qquad \sigma \approx 2.5 MeV$$

• Energy difference:

$$\Delta E = E_B^* - E_{Beam}^* \qquad \sigma \approx 20 - 40 M eV$$

- Define signal box and (grand) sidebands in $m_{ES} \Delta E$ plane.
- Blind analysis: Content of signal box unknown until all selection criteria are fixed.

- Cut-and-count analysis:
 - Use small signal box with well known efficiencies.
 - Optimize selection criteria wrt the signal box.
- Maximum likelihood fit:
 - Fit over a much larger region of the $\Delta E m_{ES}$ plane.
 - Fit signal and (all) background components.
 - Higher efficiency / sensitivity, but more complicated PDFs (that are varied over a large region).
 - Use cut-and-count analysis as baseline.
- Selection criteria determined using background and signal MC, off resonance data and side band data.

$B \longrightarrow K^* \gamma$ and $\rho \gamma$: Theoretical Motivation

- Examples of radiative Penguin processes: $b \longrightarrow s, d \ \gamma$
- $B \longrightarrow K^* \gamma \ (\rho \gamma)$ is sensitive to $V_{ts} \ (V_{td})$.
- But also sensitive to new physics enhancing branching ratios and/or CP asymmetries (from < 1% up to 20% (Kagan & Neubert)).
- Use (Ali & Parkhomenko) ratio to cancel (long distance QCD) uncertainties (cf B_d and B_s mixing): $\frac{Br(B \rightarrow \rho \gamma)}{Br(B \rightarrow K^* \gamma)} = (\frac{1}{2})(\frac{|V_{td}|}{|V_{ts}|})^2 \quad \Omega_{(Phase \ space)} \quad \zeta^2_{(Form \ Factors)}[1 + \Delta R]$ where (1/2) is from isospin, $\zeta = 0.76 \pm 0.06$ (z. Phys. C 63, 1994) and $\Delta R < 0.15$.
- Can extract $\left(\frac{|V_{td}|}{|V_{ts}|}\right)^2$ with a theoretical uncertainty of 20%.

$B \longrightarrow K^* \gamma$: Reconstruction

- Based on run 1 data set: 20.7 fb^{-1} (2.6) on (off) resonance.
- K^* reconstruction modes:
 - $K^{*0} \longrightarrow K^+ \pi^-$
 - $K^{*0} \longrightarrow K^0_s \pi^0$
 - $K^{*+} \longrightarrow K^+ \pi^0$
 - $K^{*+} \longrightarrow K^0_s \pi^+$
- Require a high energy photon: $1.5 < E_{\gamma} < 4.5 \text{ GeV}$ $2.3 < E_{\gamma}^* < 2.85 \text{ GeV}$
- Veto photons from π^0 and η .
- Require identified kaon in the DIRC: 87% efficient for the signal and reduces the combinatorial background by a factor 4.

$B \longrightarrow K^* \gamma$: Backgrounds

- Main background comes from continuum $q\bar{q}$ production with photon from ISR or π^0 and η decays. Other B backgrounds negligible.
- Use event topology to suppress jet like continuum background from isotropic $B\overline{B}$: thrust, B direction and K^* helicity.

$$B \longrightarrow K^* \gamma: \Delta E^*$$

- Require: -200 (-225) MeV < ΔE^* < 100 (125) MeV
- (Single) photon candidate rescaled to $\Delta E^* = 0$:
 - Removes tail in m_{ES} resolution.
 - Improves the resolution from 2.7 (2.9) MeV to 2.5 (2.6) MeV for B^0 and B^+ respectively.
- Signal yields obtained from fitting m_{ES} distributions.

Mode	Efficiency	Nbr signal events	Br $(B \longrightarrow K^* \gamma) \times 10^{-5}$
$K^+\pi^-$	14.0%	135.7 ± 13.3	$4.24 \pm 0.41 \pm 0.22$
$K^0_s\pi^0$	1.4%	14.8 ± 5.6	$4.10 \pm 1.71 \pm 0.42$
$K^+\pi^0$	3.9%	28.1 ± 6.6	$3.01 \pm 0.76 \pm 0.21$
$K^0_s\pi^+$	4.3%	57.6 ± 10.4	$5.52 \pm 1.07 \pm 0.38$

 $B \longrightarrow K^* \gamma$: Combined results

• Combined results (to appear in PRL):

 $Br(B^+ \longrightarrow K^{*+}\gamma) = (3.83 \pm 0.62 \pm 0.22) \times 10^{-5}$ $Br(B^0 \longrightarrow K^{*0}\gamma) = (4.23 \pm 0.40 \pm 0.22) \times 10^{-5}$

• Define CP-violating asymmetries A_{CP} :

$$A_{CP} = \frac{\Gamma(B \to K^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\bar{B} \to \bar{K^* \gamma}) + \Gamma(B \to K^* \gamma)}$$

• We obtain at 90% C.L.:

 $-0.170 < A_{CP}(B \to K^* \gamma) < 0.082$

• This analysis is currently being updated with Run 2 data.

 $B \longrightarrow \rho \gamma$: Current situation

- Experimentally the mode has not been seen!
- Current situation:

	$Br(B^0\longrightarrow ho^0\gamma)$	$Br(B^+ \longrightarrow \rho^+ \gamma)$
Ali and Parkhomenko	$(0.49 \pm 0.21) imes 10^{-6}$	$(0.85 \pm 0.40) \times 10^{-6}$
Bosh and Buchalla	$0.76^{+0.26}_{-0.23} imes 10^{-6}$	$1.53^{+0.53}_{-0.46} \times 10^{-6}$
CLEO	$< 1.7 imes 10^{-5}$	$< 1.3 imes 10^{-5}$
BELLE	$< 0.99 imes 10^{-5}$	$< 1.06 imes 10^{-5}$

$B \longrightarrow \rho \gamma$: Preliminaries

- Based on Run 1 and Run 2 data set: 56 (6.3) fb^{-1} on (off) resonance
- Decay modes: $\rho^0 \longrightarrow \pi^+\pi^-$ and $\rho^+ \longrightarrow \pi^+\pi^0$.
- Analysis similar to $K^*\gamma$, but:
 - Smaller branching fraction (x50) and wider resonance (x3).
 - Less help from Particle IDentification to suppress combinatorial background (continuum pions).
 - $K^*\gamma$ with kaon misidentified as a pion has similar kinematics and will be a background. A new pion selector (80%) has been introduced specifically to reduce the $K^*\gamma$ background to $\sim 1\%$.
 - Unobserved mode $B^+ \longrightarrow \rho^+ \pi^0$ will be a significant systematic uncertainty for the $\rho^+ \gamma$ mode.
- Blind analysis.

$B \longrightarrow \rho \ \gamma$: Background suppression

- Continuum suppression:
 - Vertex separation between $\rho^0 \gamma$ candidate and the rest of the event.
 - Net flavour production in the rest of the event.
 - Event shape variables: thrust, polar angle, helicity, Fox-Wolfram R'2.
 - 18 energy cones around the photon.
 - Combined into a neural net.
 - Reduces backgrounds / improves sensitivity by up to a factor two.
 - Net trained on continuum background, but also efficient for rejecting combinatorial $B\bar{B}$ background.
 - Working on improving the net flavour production separation and also vertex separation for $\rho^+\gamma$ mode.

$B \longrightarrow \rho \gamma$: Neural Net output

$B \longrightarrow \rho \gamma$: Cuts and Fit

- Multiple candidates: Use ΔE^* and $p_{\rho,CMS}$ to select the best candidate 2.8% of signal candidates are wrongly selected.
- Subsequent helicity angle cut still useful to reject $B^+ \longrightarrow \rho^+ \pi^0$ ($sin^2\theta$ vs. $cos^2\theta$ - reduces background by a factor 2 with a 10% signal loss).
- (Single) photon energy rescaling symmetrizes and improves m_{ES} resolution by 1 MeV to 2.5 MeV.
- Fit:
 - Cut on neural net output to reduce continuum and $B\bar{B}$ combinatorial background.
 - Then do a Maximum Likelihood fit with m_{ES} , ΔE^* and M_{ρ} .
 - Only fit $B \longrightarrow \rho \gamma$ signal and continuum background.
 - Estimate B background effects with Toy MC study.

 $B \longrightarrow \rho \gamma$: Efficiencies and Fit bias

- Signal efficiencies:
 - $\rho^0 \gamma : 11.7\%$

 $- \rho^+ \gamma: 9.3\%$

- Fit region: $-300 < \Delta E^* < 300 \text{ MeV}$ 5.2 < $m_{ES} < 5.29 \text{ GeV}$
- Signal PDFs fixed to $K^*\gamma$ values while floated for the continuum background (except ρ resonant fraction).
- B decay background effect on signal yield:
 - Systematic shift when B background is ignored in the fit.
 - $\rho^0 \gamma$: 0.5 ± 0.5 events.
 - $\rho^+\gamma$: 2.5 ± 2.5 events.

- Results from the fit:
 - $-\rho^0\gamma$: 3.1 ± 4.2 signal events
 - $\rho^+\gamma$: 4.6 ± 5.8 signal events
- Upper limits:
 - We do not subtract B background bias to calculate upper limits.
 - Include 15% systematics (10% from ρ resonant fraction).

 $Br(B^0 \longrightarrow \rho^0 \gamma) < 1.5 \times 10^{-6}$ at 90% C.L. $Br(B^+ \longrightarrow \rho^+ \gamma) < 2.8 \times 10^{-6}$ at 90% C.L.

• Close to theoretical predictions.

$$B \longrightarrow \rho \gamma$$
: CKM

For illustrative purposes only - No theoretical errors!

- ElectroMagnetic and Z penguins and WW box diagram contributions.
- EM penguin seen in $B \longrightarrow K^* \gamma$.
- SM calculations have large uncertainties because of strong interactions (form factors).
- Expected to be at the 0.57-2.3 $\times 10^{-6}$ level (A. Ali et al.)
- Sensitive to new physics.

- Based on Run 1 data set.
- Modes:
 - $B^+ \longrightarrow K^+ l^+ l^-$
 - $B^0 \longrightarrow K^0_s l^+ l^-$
 - $B^+ \longrightarrow K^{*+}l^+l^-$
 - $B^0 \longrightarrow K^{*0} l^+ l^-$

where $l = e, \mu$, and $K^{*0} \longrightarrow K^+ \pi^-$ and $K^{*+} \longrightarrow K_s^0 \pi^+$.

- Signal estimated with an unbinned Maximum Likelihood fit in the $m_{ES} \Delta E$ plane.
- Blind analysis.

 $B \longrightarrow K^{(*)} l^+ l^-$: Background suppression

- Combinatorial background from $B\overline{B}$: Likelihood ratios
 - Vertex probabilities
 - Dilepton separation
 - Missing energy
- Continuum background: Fisher discriminant
 - Event topology variables
 - m_{Kl} to discriminate against semileptonic D decays

$B \longrightarrow K^{(*)} l^+ l^-$: Peaking Backgrounds

- Peaking background from:
 - $B \longrightarrow J/\psi K^*$ where $J/\psi \rightarrow l^+ l^-$
 - $B \longrightarrow \psi(2S) K^*$ where $\psi(2S) \rightarrow l^+ l^-$
- Veto in the $\Delta E m_{l^+l^-}$ plane
- $K \mu$ reassignment veto

 $B \longrightarrow K^{(*)} l^+ l^-$: Results

$B \longrightarrow K^{(*)} l^+ l^-$: Results

- Efficiencies range from 5.8% $(K^{*+}\mu^{+}\mu^{-})$ to 17.5% $(K^{+}e^{+}e^{-})$.
- Upper limits including systematics (submitted to PRL):

 $Br(B \longrightarrow Kl^+l^-) < 0.50 \times 10^{-6}$ at 90% C.L. $Br(B \longrightarrow K^*l^+l^-) < 2.9 \times 10^{-6}$ at 90% C.L.

- Close to theoretical prediction!
- Currently being updated with Run 2 data.

Conclusions

• First results on $B \longrightarrow \rho \gamma$ based on full Run 1 and Run 2 data set: $Br(B^0 \longrightarrow \rho^0 \gamma) < 1.5 \times 10^{-6}$ at 90% C.L.

$$Br(B^+ \longrightarrow \rho^+ \gamma) < 2.8 \times 10^{-6}$$
 at 90% C.L.

• Close to SM predictions with:

$$Br(B \longrightarrow Kl^+l^-) < 0.50 \times 10^{-6}$$
 at 90% C.L.
 $Br(B \longrightarrow K^*l^+l^-) < 2.9 \times 10^{-6}$ at 90% C.L.

- BaBar is busy updating Run 1 based results with Run 2 data.
- Will soon have new results on: $B \longrightarrow K^{(*)}l^+l^-$, h^+h^- , $K^*\gamma$
- New analyses coming along: $B \longrightarrow \omega \gamma, \pi^0 \pi^0 \dots$
- We are on our way to $100 fb^{-1}$ by the summer.