La Thuile, 7 March '02

Round Table: "A Picture of HEP in the LHC Era"

The Point of View of Physics

G. Altarelli CERN Main open problems in particle physics The problem number

- What and where is the Higgs
- What new physics near the weak scale
 - Supersymmetry ?
 - Extra dimensions ?
 - New strong forces ?

LHC, NLC, CLIC, VLHC, µ collider

The interest on v masses, mixing and CP will last:
•same dignity as for quark masses and CKM
•added interest for Majorana and cosmol. features:
•L non conservation, link to GUT's
•Baryogenesis thru leptogenesis, hot DM

While superbeams could be an intermediate step v-factories are the ultimate facility.

Precision measurements of v mixing parameters: θ_{23} , Δm_{23}^2 at ~1%, θ_{13} down to few tenth of a degree,

sign(Δm_{23}^2), CP violation phase iff MSW-LA

rare μ and K decays, precision e-w tests...

Apart from additional "local" projects, the main "international" or even "world" projects are:

> LHC, NLC, v-factory CLIC, VLHC, µ-collider

The LHC has been designed to explore the relevant energy region and to give a clear answer to Problem 1.

The motiv.s for an e⁺e⁻ collider to look at the same physics is that the picture from the LHC will be coarse-grained.

Assuming the standard way beyond the Standard Model Conceivably the LHC will achieve:

Higgs:

Observed $\Delta m/m \sim 10^{-2} - 10^{-3}$ one or two decays measured

SUSY:

Discovered a number of sparticles many missed
(e.g. heavier higgses, gauginos, sleptons)
few precise measurements done

In 1987 a La Thuile Workshop concluded that to cover the whole LHC range a e^+e^- collider must have $2E = 2 \text{ TeV} \longrightarrow \text{CLIC}$

For NLC:

- 2E = 0.5-1 TeV-> sensitivity to new physics threshold
- Conceivably the NLC will achieve:

Higgs: The lightest H cannot escape

SUSY:

More thresh dep. But e-w spectrum most probably in Studied; $\Delta m/m \rightarrow few 10^{-4}$ more decays observed-> couplings

Discovered all e-w coupled sparticles, within reach; many precise measur'ts done + top physics, more precision e-w tests....

Expected accuracy on H branching ratios

G. Altarelli - La Thuile '02

G. Altarelli - La Thuile '02

Measuring the Higgs spin

SUSY: example of LHC vs NLC precision

12 (WS)^M6/^M6 1.2 m_H = 120 GeV g_{ttH} and g_{WWH} LHC 1σ in SM and 1.1 **MSSM** from 1.05 LHC and NLC 1 LC 95% CL LC 1σ 0.95 MSSM prediction: 0.9 300 GeV < m_A < 1000 GeV 200 GeV < m_ < 300 GeV 0.85 100 GeV < m_ < 200 GeV 0.8 0.85 1.05 1.1 1.15 0.8 0.9 0.95 1 1.2 $g_{top}/g_{top}(SM)$

G. Altarelli - La Thuile '02

No doubts, a NLC ~10 yrs before CLIC would be a great asset for particle physics.

From the point of view of physics, the best in the LHC years would be NLC and a v-factory (plus some "local" projects)

CLIC and even more so VLHC & the μ -factory would be for a later stage.

The real problem is whether we can afford:

LHC ~ 3BI NLC ~ 4BI € v-fact. ~ 1-1.2 BI

(including detectors)

but that is not my theme here!