

Gueorgui Velev FERMILAB/CDF

La Thuile '01

G.Velev , La Thuile '01 1

- > Introduction:
 - ➤ the Standard Model Higgs
 - > production at the Tevatron
 - ► Higgs decays
- SM Higgs searches
 - ➤ SM Higgs
 - Impact of the Upgrades
 - CDF
 - 🗸 DØ
 - Combined Channel Results
- MSSM Higgs
- Fevatron: long-term luminosity goals
- Summary

Acknowledgements:

Tevatron Higgs Working Group

or HWG

Final report: http:/fnth37.fnal.gov/higgs.hml

- The Standard Model is a very successful theory of elementary particles and their interaction at energies of O(100 GeV)
- Precision tests of the electroweak theory show impressive consistency with the Standard Model, no signs of any deviations
- The underlying dynamics responsible for electroweak symmetry breaking is still unknown.
- The simplest possible dynamics for electroweak symmetry breaking predicts the existence of one scalar boson (Higgs) with unknown mass M_H (free parameter).

► In $M_H \propto f(m_t, \Delta M_W)$

- Indirect search via precision measurements
 - Data seem to prefer low mass Higgs: M_H<170 GeV at 95 % CL

- The direct search at LEP-200:
 - M_H>113.5 GeV/c² at 95 % CL or 2.9σ excess for M_H=115 GeV/c²
- ➢ Is it within reach in Tevatron Run II?

- ➢ gg→H dominates over all mass ranges, but backgrounds are largest
- WH, ZH modes provide straightforward trigger, smaller backgrounds
- Htt mode has distinct signature
- SUSY enhances some cross-sections...

M.Spira, hep-hp/9810289

- > M_H<130 GeV/c² "low mass Higgs" > Most promising modes are: $q\overline{q} \rightarrow VH$ where $V \to \ell v, v \overline{v}, \ell^+ \ell^-, q \overline{q} \text{ and } H \to b \overline{b}$ good b-tagging, jet resolution, lepton ID and coverage are the key for success \rightarrow M_H>130 GeV/c² "high mass Higgs" $gg \rightarrow H \rightarrow VV$ where $VV \rightarrow \ell^+ \ell^- \nu \overline{\nu}$
 - $q \ \overline{q'} \rightarrow VH \rightarrow VVV \quad where$ $VVV \rightarrow \ell^{\pm} \ell^{\pm} q \ \overline{q'}X \ , \ \ell^{\pm} \ell^{\pm} \ell^{\mp} X$

Assume M_H ~120 GeV/c², WH/ZH final states are

and assume 15 fb⁻¹ luminosity per detector

Process	WH	Wbb	lv bb
		W ττ	lvtt
Events	$165 \text{ fb x } 15 \text{ fb}^{-1} = 2475$	x 0.68 = 1650	x 0.296 = 500
		x 0.07 = 168	x 0.296 = 50

Process	ZH	Zbb	wbb
		Ζττ	VVTT
Events	97 fb x 15 fb ⁻¹ = 1455	x 0.68 = 990	x 0.2 = 195
		x 0.07 = 181	x 0.2 = 21

- Compare to top quark discovery:
 67 pb⁻¹ x 5 pb = 335 tt events.
- New detectors (CDF & DØ) have more than twice better (Acceptance)x(Efficiency)x(Resolution)

- **CDF Run II upgrades** \geq
 - new front-end, DAQ and trigger electronics >
 - > trigger
 - ✓ new L1 tracking trigger
 - new L2 secondary vertex trigger
 - new time of flight system \succ
 - new silicon vertex detector >
 - ✓ 7 layers, |η|<2</p>
 - new central tracker drift chamber >
 - \checkmark N_{axial}=N_{stereo}=48, $\Delta p_t/p_t < 0.001 p_t$
 - new plug calorimeter
 - large muon system coverage >

> entirely new tracking system >

 \geq

DØ Run II upgrades

- 2T super conductor solenoid
- barrel silicon detector ~

new trigger and DAQ electronics

- 8 layers of scintilating fiber tracker ~
- preshower detector ~
- improved muon spectrometer $\mathbf{>}$

March 6, 2001

G.Velev, La Thuile '01

8

- Typical selection
 - inclusive high-p_t lepton trigger
 - > central $e(\mu)$ with $E_T(p_t)>20$ GeV
 - ► , E_T>20 GeV
 - ➤ two b-tagged jets(E_T≥15 GeV, |η| ≤ 2.0): one tight b-tag and one loose tag (example soft lepton tag, SLT)

> veto:

- ✓ additional leptons with E_T >10 GeV
- ✓ extra jets with p_t>30 GeV and |η|<2.5
- ✓ more than one extra jet with p_t <30 GeV and |η|<2.5</p>
- Main backgrounds: Wbb, tt, WZ, tb

Signal and background events in 1 fb⁻¹

March 6, 2001

G.Velev , La Thuile '01 9

b-tagging in Run II

- B-tagging is very important in the low mass Higgs search: $H \rightarrow bb$
- > CDF:
 - > 3D vertex reconstruction
 - better impact parameter resolution comparing to Run I (6⊕19/p_t)
 - > SVT trigger: allows calibration on $Z \rightarrow b\bar{b}$
- DØ:(M. Roco)
 - new silicon detector: 6 barells

- The bb mass resolution is crucial in the establishment of a signal
 - MC study of bb events collected via inclusive muon trigger. Applied specific jet corrections:
 - ✓ the muon momentum
 - ✓ ⊭ projection along each jet
 - ✓ jet charge fraction
- Check these corrections on Run I CDF data
 - ➤ the improvement in the real Z→bb data is as predicted by MC

S. Kulman, S.Lami, R. Snihur, T. Dorigo, A. Ribon

- Using more information can improve jet resolution:
 - standard jet algorithm uses only calorimeter information
 - ➤ adding tracking + shower detector information improves energy resolution by 24%/√P_T
- If the dijet mass resolution can improve to 10%, then a gain in significance is almost 25%

Typical selection

- ► , Æ_T>35 GeV
- two b-tagged jets: one tight b-tag and one loose tag (SLT)
- > $\delta \phi(\not\! E_T, \text{closest jet}) > 0.5$
- scalar sum of the hadronic energy H_T<175 GeV (reject the tt
 background)

> veto:

- no extra jets
- reject events with one or more isolated leptons with p_t>8 GeV
- Main backgrounds: QCD, Zbb, ZZ, tt, WZ, tb

Signal and background events in 1 fb⁻¹ (do not include generic bb production processes)

P.Bhat et al., Report of the Tevatron HWG

- DØ: neural network (NN) selection
 (P.Bhat, R. Gilmartin and H.Prosper)
- Example: expected number of \nother _Tbb signal and background events in 1 fb⁻¹ for various M_H assuming 10% bb mass resolution in case of NN(red) and traditional techniques (black)

$M_{ m H}(GeV/c^2)$	110	120	130
ZH	3.5	2.8	2.2
	(2.8)	(1.9)	(1.3)
WH	2.8	2.0	1.7
	(1.8)	(1.3)	(0.8)
Signal	6.3	4.7	2.1
	(4.6)	(3.2)	(3.9)
Background	27.7	22.4	23.6
	(27.9)	(19.4)	(15.0)

- Typical selection
 - inclusive lepton trigger
 - at least two opposite sign leptons (ee,μμ) with E_T(p_t)>10 GeV
 - ► M_Z -10< $M_{||}$ < M_Z +10 GeV/c²
 - two b-tagged jets: one tight b-tag and one loose tag (example soft lepton tag, SLT)
 - scalar sum of the hadronic energy H_T<175 GeV (reject the tt background)
 - > veto:
 - no extra jets
- Main backgrounds: Zbb, tt, ZZ, tb

P.Bhat et al., Report of the Tevatron HWG

M $_{\rm H}$ (G e V /c 2)	100	110	120	130
Signal events(S)	1.2	0.9	0.6	0.4
Zbbbar	1.4	1.2	1.0	0.8
ZZ	1.6	0.8	0.1	0.0
ttb a r	1.3	1.2	1.2	1.1
Total Background(B)	4.3	3.2	2.3	1.9
S / √ B	0.6	0.5	0.4	0.3

Signal and background events in 1 fb⁻¹

- Typical selection
 - > multijet trigger
 - ▶ N_{jets}>4, E_T>15 GeV, $|η| \le 2.0$
 - ► two b-tagged jets, c≥15 GeV, |η| ≤ 2.0
 - $\blacktriangleright \ |\Delta\eta_{bb}| \leq 1, \, |\Delta\eta_{jj}| \leq 1$
 - ► $M_{jj} \ge M_{w(z)} \sigma(M_{jj})$
 - \blacktriangleright M⁻_{bb} \ge M_H σ (M⁻_{bb})
- Main backgrounds: huge QCD, tt, Zjj, W/Zbb
- CDF improvements:
 - higher b-tagging efficiency
 - special multijet trigger for associated Higgs production: 3 jets, uneven E_T cuts and lower ΣE_T threshold

March 6, 2001

A.Goussiou et al., Report of the Tevatron HWG

Signal and background events in 1 fb⁻¹

Focus on gg → H →W^{*}W^{*} →I⁺I⁻νν̄

- > trigger: two high p_t central e or μ
- angular cuts to remove ττ background
- > veto: events with high E_T jets, or b-tags
- main backgrounds: WW,tt
- Add qq→ W(Z)H →W(Z)W*W* →IIIX (trilepton) mode
 - > special cuts, expect 1 event, 0.5 background at 20 fb⁻¹ ($M_H = 150 \text{ GeV/c}^2$) S/ $\sqrt{B} = 1.4$
 - main backgrounds: WZ,ZZ
- $\succ q \overline{q} \rightarrow W(Z)H \rightarrow W(Z)W^*W^* \rightarrow I^{\pm}I^{\pm}jjX$
 - same sign leptons, two jets with E_T>15 GeV, ∉_T>10 GeV
 - veto: no b-tagged jets
 - main backgrounds: WZ,ZZ,tt
- Looks very hard to do, Tevatron must exceed its present goals March 6, 2001

T.Han et al., Report of the Tevatron HWG

		Higgs mass (GeV/c²)				
С h a n n e l	Rates	140	150	160	170	180
	S	2.6	2.8	1.5	1.1	1.0
	В	44.0	30.0	4.4	2.4	3.8
	S /√ B	0.39	0.51	0.71	0.71	0.51
I [±] I [±] jj	S	0.29	0.36	0.41	0.38	0.26
	В	0.58	0.58	0.58	0.58	0.58
	S /√ B	0.38	0.47	0.54	0.50	0.34

Signal and background events in 1 fb⁻¹

- Bayesian combination method two experiments (CDF and DØ)
- Band extends upward 30% as an indication of the uncertainties in:
 - b-tagging efficiency
 - mass resolution
 - background rate
 - systematic effects
- These curves are from parameterized simulation (SWH) developed by HWG. We expect to improve on it because:
 - ➤ 3D silicon vertexes
 - SVT triggering

- Focus: the Higgs sector of the minimal supersymmetric model (MSSM)
 - SM with a second Higgs doublet
 supersymmetric partners
- MSSM has five Higgs bosons: h,A,H,H[±]
- > Masses are governed by two parameters: M_A and $tan\beta \equiv v_2/v_1$
- Production of V\u00f5 (\u00e9=h,H) can be SM like. We can apply SM Higgs search to MSSM parameter space

- At large tanβ the bbA and bbφ production is enhanced (M.Roco et al., Report of the Tevatron HWG)
 - search signatures: bbbb

MSSM Higgs in Run II

T.Carena, H.E.Haber, S.Mrena and C.E.M.Wagner, Report of the Tevatron HWG

- Assumption:
 - ► m_{stop} = 1TeV

 - ➤ solid lines: bb̄φ,A
 - left plots: 95 CL exclusion regions
 - right plots: 5σ discovery regions
 - top two plots: maximal mixing in top squark sector
 - lower two plots: particular choice of top squark mixing, which makes a dificult region at large tanβ

Fermilab Long-Term Luminosity Goals

- The initial Run II goal is to achieve a luminosity of ~ 1x10³² cm⁻² sec⁻¹
 - 2 fb⁻¹ delivered to each detector, CDF and DØ
- Future accelerator performance would be based upon:
 - electron cooling
 - improved antiproton availability
 - liquid lithium antiproton lens
 - aperture improvements
 - controlling the pp beam-beam interaction

Possible Accumulation of luminosity before LHC era....

Year	Goal	Luminosity
'01	Main injector and recycler	0.6 fb⁻¹
·02	Start antiproton recycling	1.2 fb ⁻¹
·03	6 month shutdown; install e-cool, 132 nsec and etc.	0.8 fb ⁻¹
'04	$L= 2 \times 10^{32}$	2.0 fb ⁻¹
'05	$L = 3 \times 10^{32}$	3.5 fb ⁻¹
'06	$L = 5x10^{32}$, 6 month shutdown to install C-0	2.3 fb ⁻¹
'07	$L=5 \times 10^{32}$	3.8 fb ⁻¹
TOTAL		15.0 fb ⁻¹ /per exp.

Summary

- ➤ The HWG results indicate that a SM Higgs with M_H<190 GeV/c² can be excluded at 95% CL with 15 fb⁻¹, and can be discovered at 5σ with M_H<120 GeV/c². The actual CDF/DØ detectors might be also do better than HWG simulation.
- There is no single, "golden" discovery channel like we had for the top quark: combining all channels, CDF and DØ results, is crucial!
- > To make 3σ evidence or 5σ discovery of a higgs signal at the Tevatron, all the following factors are essential:
 - more luminosity > 15 fb⁻¹
 - significant improvement over Run I
 - much better b-taging, 3D
 - ✓ dijet and bb mass resolution
 - \checkmark more efficient triggers, possible calibration on $~Z \rightarrow bb$
 - ✓ improved background estimates and cuts, employing new analysis methods, e.g neural nets …
- The upgraded Tevatron, with assumption above could place tight limits on the MSSM Higgs sector (a good chance for discovery exist, if it is present) before LHC era.