

Francesca Spada

University of Rome "La Sapienza" and INFN

for the NOMAD and CHORUS collaborations

Two v experiments at CERN:

Early 90's: theoretical indication for neutrino mass differences of a few eV Two experiments proposed at CERN in 1993:

NOMAD high resolution on momentum reconstruction and pid \rightarrow signal from kinematical criteria

CHORUS high resolution at vertex

 \rightarrow signal from $\tau {}^{\prime} s$ direct observation

Sensitive to very small mixing angles for $\Delta m^2 \sim 50 \text{ eV}^2$ (1993, proposal) \rightarrow neutrinos of mass in the cosmological region Today: SK – CMB experiments $\rightarrow \Sigma m_v < 4\text{eV}$ ($\Delta m^2 < 16 \text{ eV}^2$) at 90%CL

Difficult to reject efficiently both background sources with simple kinematic criteria \implies opposite requirements.

CERN

Roberto Petti

 Drift Chambers (target and momentum measurement) Fiducial mass 2.7 tons with average density 0.1g/cm³ 44 chambers + 5 chambers in TRD region Momentum resolution $\sim 3.5\%$ (p < 10 GeV/c)

THE DETECTOR

- Transition Radiator Detector (TRD) for e[±] identification 9 modules (315 radiator foils followed by straw tubes plane) π rejection ~ 10² for electron efficiency $\geq 90\%$
- Lead glass Electromagnetic Calorimeter (energy measurement) $\sigma(E)/E = 3.2\%/\sqrt{E[\text{GeV}]} \oplus 1\%$

Preshower (e and b detection) Additional π rejection $\sim 10^2$ for electron efficiency $\geq 90\%$ Precise γ position measurement $\sigma(x), \sigma(y) \sim 1$ cm

- Hadronic Calorimeter (n and K⁰₁ veto)
- Muon Chambers for μ[±] identification $\epsilon \sim 97\%$ for $p_{\mu} > 5GeV/c$
- Front Hadronic Calorimeter (FCAL) Extra 17.7 tons target.
- Detailed description in Nucl. Instr. Meth. A404 (1998) 96.

THE ANALYSIS - 1

- Definition of probability density functions, pdf L describing the probability, for an event with the given set of N variables X_i, to be signal (L_S) or background (L_B):
 - the global pdf L is subdivided into n-dimensional partial pdf's with n < N and n = 1, 2, 3, 4, chosen among the most discriminating internal correlations of of the set of variables X_i;
 - partial pdf's can be included in the set of variables X_i, as well.
- Event classification based on LIKELIHOOD RATIO between the signal S and background(s) B hypotheses:

 $\ln \lambda \stackrel{\text{def}}{\equiv} \ln \frac{\mathcal{L}_S}{\mathcal{L}_B}$

- The optimal treatement is to compare the SHAPE signal & background(s) in a likelihood fit to In λ:
 - limited by available statistics;
 - the relevant information from a S/B fit is the S/B RATIO along the In λ distribution;
 - define different SIGNAL BINS in the tail of ln λ, characterized by different S/B ratios;
 - different bins are considered statistically independent.

of

 Independent measurements from different decay modes & signal bins are combined within the UNIFIED APPROACH, (G.F. Feldman & R.D. Cousins, Phys. Rev. D57 (1998) 3873).

Roberto Retti

THE ANALYSIS - 2

The large kinematical suppression and the use of multi-dimensional correlations require. a precise knowledge of background(s) down to a $\sim 10^{-5}$ level. The final estimate of backgrounds & efficiencies is obtained from the DATA SIMULATOR technique: • use IDENTIFIED v, CC in both Data (DS) and Monte Carlo (MCS) and replace the $\mu^$ by: v (i.e. nothing) e[−] from MC CONCERNES $\tau^- \rightarrow X MC$ 0 COCNC. · CODATA def $\frac{e(MC) \times e(DS)}{e(MCS)}$ compute all efficiencies as 8

🕈 In order to obtain reliable background predictions a

'BLIND ANALYSIS'

is used:

- define a signal region, THE "BOX", by optimizing the overall sensitivity to oscillations;
- data events falling inside the BOX CANNOT be analyzed until the bkgnd predictions are finalized;
- the τ^+ search and the τ^- search outside the "BOX" are used as control samples for backgrounds.

THE ANALYSIS - 3

Candidate structure

The internal structure of the p (3π) candidate is exploited both for the selection procedure and for the rejection of the

CERN

 $v_{\mu} + v_{e}$ CC backgrounds through a a likelihood function \mathcal{L}^{INT}

II Jet structure

In the τ hadronic decays a control of the jet structure is needed since for background(s) the candidate is mostly extracted from the jet.

III Global kinematics

The rejection of each of the two main background contributions is achieved by constructing TWO appropriate likelihood ratios λ^{NC} and λ^{CC} , exploiting the full event kinematics:

DEFINITION OF THE SIGNAL REGION

Roberto Relli

NO EVIDENCE FOR OSCILLATIONS

h(1 y

10

h(21

12.5

10

12.5

FINAL RESULTS OF THE ν_{τ} SEARCH

NO EVIDENCE

for oscillations from the analysis of data:

- NUMBER & SHAPE of observed events consistent with background.;
- 75% of the overall sensitivity comes from regions with only a SMALL BACKGROUND

		Analysis		Bin	Tot. bkg.	$N_{P=1}^{\tau}$	Data
Tot. bkg.	51.1 ± 5.4	-			49-57-57		
N_{P-1}^{r}	14415	$v_{\tau}\bar{v}_{e}e$	DIS	III	$0.28^{+0.31}_{-0.09}$	903	0
Data	52	V-Vee	DIS	VI	0.25 ± 0.09	1694	0
Syst -	10% on $N_{P=1}^{\tau}$, 20% on bkg.	$\nu_{\tau}h(0_{\gamma})$	DIS	111	0.05 ± 0.60	274	0
byot.		$\nu_{\tau}h(0_{\gamma})$	DIS	IV	$0.12_{-0.05}^{+0.60}$	1246	0
		$\nu_{\tau}h(1\gamma)$	DIS	VII	0.07+0.70	211	0
	7729	$\nu_{\tau}h(1_{\gamma})$	DIS	VIII	$0.07_{-0.04}^{+0.70}$	1037	0
$\begin{cases} S_{\nu_{\mu} \to \nu_{\tau}} \\ L_{\nu_{\mu} \to \nu_{\tau}} \\ P(\leq L) \end{cases}$	$= 2.5 \times 10^{-4} 90\%$ CL	$\nu_{\tau}h(2\gamma)$	DIS	×II	$0.11_{-0.06}^{+0.60}$	197	0
	$= 1.7 \times 10^{-4} 90\%$ CL = 39%	$\nu_{\tau}h(1/2\gamma)$	DIS	XV	0.20 ± 0.70	660	1
		$\nu_{\tau}h(0/1\gamma)$	DIS	XVI	$0.14_{-0.06}^{+0.70}$	1348	0
		$\nu_{\tau} 3h(n\pi^0)$	DIS	N	$0.33^{+0.65}_{-0.33}$	645	0

Design sensitivity 1.9×10^{-4}

$1.62^{+1.89}_{-0.38}$	8215
------------------------	------

CHORUS Oscillation Searc

- v_{τ} appearance in a pure v_{μ} beam
- ν_{μ} energy well above τ production threshold
- A target/detector of nuclear emulsions allows direct observation of τ decay
 - 770 Kg of nuclear emulsions divided in 4 stacks perpendicular to the beam
 - Very high spatial resolution (~1µm) with 300 tridimensional hits/mm
 - Suitable to detect the τ decay signature:
 - Interaction vertex
 - Short τ path ~ 1 mm (c τ = 87 μ m)
 - A kink as decay topology
- An electronic detector reconstructs the kinematics

- 4-years exposure to the WBB from SPS at CERN
 - = 5 \cdot 10¹⁹ POTs leading to 840,000 ν_{μ} CC in CHORUS
 - $E_{protons} = 450 \text{ GeV}$
- Intense v_{μ} beam with $E_{v} \sim 27 \text{ GeV}$
- Prompt v_{τ} negligible (~0.1 bg events)

Detector layout

- Active target:
 - nuclear emulsion target
 - scintillating fibre tracker

- Air-core magnet + tracker:
 - Hadron momentum (up to 20 GeV)
 - $\Delta p/p = 0.035 \ p \ (GeV) \oplus 0.22$
 - Lead and fibre Calorimeter:
 ΔE/E = 32%/ √E (hadrons) = 14%/ √E (electrons)
 Δθ_{hadrons} = 60 mrad @ 10 GeV
 - Muon spectrometer:

• $\Delta p/p = 10 - 15\%$ up to 70 GeV

Target region

- 8 modules of scintillating fibre trackers:
 - resolution on extrapolation to CS is 150 mm in position and 2 mrad in angle

- 8 changeable sheets +4 special sheets:
 - Refine the predictions to search for a track in emulsion
- Bulk: 4 emulsion stacks (1.4 x 1.4 m²)
 - Each stack is subdivided in 36 plates
 - Plate: 90 µm transparent plastic film + 350 µm emulsion sheets on both sides

Phase I

 CHORUS was the first emulsion experiment which applied automatic scanning procedures

• History:

94-97	Neutrino data taking	2+2 years of emulsion target exposure
95-98	Predictions	Data processing for electronic detector Kinematical selection
96-99	scan-back + Vertex location	Follow-up of scan-back track in emulsion to reach the vertex
96-99	Kink search	Search of decay topologies on the scan-back track
99-00	Post scanning	Manual check + background rejection

Kinematical preselection

- Decay modes considered:
 - $\hat{\mathbf{0}}^{-} \rightarrow \hat{\mathbf{i}}^{-} \hat{\mathbf{i}}_{\hat{o}} \hat{\mathbf{f}}_{\hat{\mathbf{i}}} \qquad (BR = 18\%)$ $\hat{\mathbf{0}}^{-} \rightarrow h^{-} (n \tilde{\mathbf{0}}^{0}) \hat{\mathbf{i}}_{\hat{o}} \qquad (BR = 50\%)$
- Common to both samples:
 - Primary vertex reconstructed by Target Tracker
 - Vertex predicted in target emulsion
 - The event contains at least one negative track (τ daughter?)
- Some kinematical cut sample-dependent are applied to reduce scanning load

1µ sample

- One and only one μ with negative charge
 - Based on spectrometer response
 - Recovery of short muons by calorimeter measurement
- Selection efficiency: 80%
 - Includes vertex reconstruction, μ identification and μ matching efficiencies
- Momentum cut: $p_{\mu} < 30 \text{ GeV}$
 - Scanning load reduced by 29%
 - Would reject 15% of ν_{τ} interactions if $\nu_{\tau}{'s}$ have the same energy spectrum of $\nu_{\mu}{'s}$

Oµ sample

- No muon identified in the detector
- \geq 1 negative tracks reconstructed by the fiber trackers
- Contaminations:
 - ~ 40% of events with a misidentified muon
 - ~ 6% of events from neutrinos other than v_{μ} 's
- Momentum cut $1 \le p_{\mu} \le 20$ GeV

Rejection of products of γ conversions and secondary interactions

Bad momentum resolution at higher energies

- No spoke of the magnet crossed
- More than one track can be selected per event

Emulsion data acquisition

Scanning procedure

Scan-back: Fibre tracker \rightarrow Interface emulsion \rightarrow Bulk emulsion

- Location efficiency higher for 1µ (40%) than for 0µ (27%) independently from track angle
- Parent search: look for track segments around the scan-back position
 - Segments at small distance from the scan-back track are parent candidates
 - Large angle Long path kinks are visible

The final sample

Emulsion triggers: 2,305K

1µ		0µ			
Initial sample	713,000	Initial sample (CC contamination)	335,000 (140,000)		
Momentum cut + angle cut	477,600	≥1 negative tracks + Momentum cut + angle cut	122,400		
Events scanned	355,395	Events scanned	85,211		
Vertex located	143,742	Vertex located	20,081		
Selected for eye-scan	11,398	Selected for eye-scan	2,282		

Manual scanning

- Operator detailed computer-assisted measurement of:
 - ✓ Scan-back track
 - ✓ Parent track
 - ✓ Other tracks from primary
- To be a decay topology:
 - ✓ No black prongs or blobs
 - ✓ No recoil
 - ✓ No Auger electrons
- Selected events after automatic scanning are 5% of located events

Expected background

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
$p_t > 250 MeV$	1μ	Ομ	
Charm from n CC with missed primary lepton $\nu_{\mu/e} N \rightarrow D^{-} X \mu^{+}/e^{+}$ $\downarrow \rightarrow \mu^{-}/h^{-} + neutrals$		0.03	
Charm from ν CC with μ^+/h^+ wrong sign	< 0.03	0.69	= k
Associated charm production in NC D^+/D^0 missed, associated to D μ^-/h^- + neutrals	< 0.05		c tl
Prompt v_{τ}	< ().1	
Hadronic white kinks		2.8	

⇒ Less than 1 bg event from channels other than white kink

White kink background

- Poor previous knowledge of λwκ(pt, p)
- CHORUS <u>measured</u> $\lambda_{WK}(P_t>250MeV/c) = 21.3\pm7 \text{ m}$

 \Rightarrow 2.8 ± 0.8 WK expected in the signal region (< 3 plates from the vertex position)

Post-scanning WK rejection

- Φ_t cut: τ opposite to the shower in the transverse plane
- L_{decay} cut: τ flight length shorter and correlated with p_{had}

shower

shower

τ

Limit evaluation

- Cut combination was optimized to maximize the sensitivity to oscillation:
 - Retain 80% of τ signal

- $\Phi_{kink} > 90^{\circ}$ Oscillation probability: $P_{\delta} = \sin^{2}2k_{\delta} \cdot \sin^{2}\left(\frac{1.27 \cdot m_{\delta}^{2} \cdot L}{E}\right)$ For large Δm^{2} : $P_{\delta} = \frac{N_{\delta}}{\sum_{i=\{11,01\}} BR_{i} \cdot N_{i}^{loc} \left\langle \frac{\acute{O}_{\delta}^{CC}}{\acute{O}_{i}^{CC}} \cdot \frac{A_{i}^{\delta}}{A_{i}^{1}} \cdot \mathring{a}_{i}^{kink} \right\rangle}$ Upper limit on the number of τ candicates in absence of signal Number of v_{τ} events observed if all incident v_{μ} convert into v_{τ}
- Overall systematic error on $\sum_i (N_{max}^{\circ})_i$ estimated to be 17% and included in the upper limit

[1] T.Junk, NIM A434 (1999) 435[2] G.J.Feldman and R.D.Cousins, Phys.Rev. D57 (1998) 3873

CHORUS Phase II

- Scanning speed increased from 0.01 frames/sec in 1994 to 10,000 in 2000
- → Automatic scanning of a large emulsion volume is now feasible
 - New predictions/locations (mainly 0µ) to increase by >80
 Kevents the current sample of ~164 Kevents (scan-back started)
 - For each (old and new) located event → full event analysis in the vertex region (data-taking started, current speed is ~10 Kevents/month)
- Improvement of oscillation search to reach the proposal sensitivity
- We will have a big sample of events fully analyzed in the vertex region
- Unbiased study of charm production in neutrino interactions
 - About 300 charm events already identified

Netscan

A new scanning technique!

- Use already located events
- Pick up <u>all track segments</u> in an 8-plates deep fiducial volume around scan-back track

- ➔ Decay search is not limited to the scan-back track
- Offline analysis of emulsion data

Conclusions

- The two CERN neutrino high sensitivity experiments have successfully ended their data taking
- NOMAD has published its final results on oscillations
- CHORUS has published its phase I results and started its phase II analysis

NO EVIDENCE FOR OSCILLATION IN THE EXPLORED REGION

 New techniques have been developed which will be largely applied in future experiments (e.g. Opera)