Results on Neutrino physics at CERN

Francesca Spada
University of Rome "La Sapienza" and $I \mathcal{N} \mathcal{F} \mathcal{N}$
for the $\mathcal{N} O \mathcal{M A D}$ and $\mathcal{C H O}$ RUS collaborations

Two vexperiments at CERN:

Early 90's: theoretical indication for neutrino mass differences of a few eV Two experiments proposed at CERN in 1993:
Y) NOMAD high resolution on momentum reconstruction and pid \rightarrow signal from kinematical criteria
CHORUS high resolution at vertex
\rightarrow signal from τ 's direct observation

Sensitive to very small mixing angles for $\Delta \mathrm{m}^{2} \sim 50 \mathrm{eV}^{2}$
(1993, proposal) \rightarrow neutrinos of mass in the cosmological region
Today: SK - CMB experiments $\rightarrow \Sigma \mathrm{m}_{v}<4 \mathrm{eV}\left(\Delta \mathrm{m}^{2}<16 \mathrm{eV}^{2}\right)$ at $90 \% C L$

- The signal ν_{τ} CC has intermediate properties between two background sources:

IMBALANCE

Difficult to reject efficiently both background sources with simple kinematic criteria \Longrightarrow opposite requirements.

THE DETECTOR

- Preshower (e and $)$ detection)

Additional π rejection $\sim 10^{2}$ for electron efficiency $\geq 90 \%$
Precise γ position measurement $\sigma(x), \sigma(y) \sim 1 \mathrm{~cm}$

+ Hadronic Calorimeter (n and $K_{L}^{r 0}$ veto)
- Muon Chambers for $\mu^{ \pm}$identification
$\varepsilon \sim 97 \%$ for $p_{\mu}>5 \mathrm{GeV} / c$
- Front Hadronic Calorimeter (FCAL)

Extra 17.7 tons target.

- Drift Chambers (target and momentum measurement)

Fiducal mass 2.7 tons with average density $0.1 \mathrm{~g} / \mathrm{cm}^{3}$
44 chambers +5 dhambers in TRD region
Momentum resolution $\sim 3.5 \%(p<10 \mathrm{GeV} / c)$

- Transition Radiator Detector (TRD) for $e^{ \pm}$identification 9 modistes (315 radiator foils followed by straw tubes plane)
π rejection $\sim 10^{2}$ for electron efficiency $\geq 90 \%$
- Lead glass Electromagnetic Calorimeter (energy measurement)
$\sigma(E) / E=3.2 \% / \sqrt{E[\mathrm{GeV}]} \oplus 1 \%$

THE ANALYSIS - 1

- Definition of probability density functions, pdf \mathcal{L} describing the probability, for an event with the given set of N variables X_{i}, to be signal $\left(\mathcal{L}_{S}\right)$ or background $\left(\mathcal{L}_{B}\right)$:
- the global pdf L is subdrided into n-dimensional partral pdf's with $n<N$ and $n_{0}=1,2,3, \frac{1}{2}$, chosen among the most discmminating internal correlations of of the set of wariables $x_{i r}$
- partial pdf's can be included in the set of variables X; as well.
- Event classification based on

LIKELIHOOD RATIO

between the signal S and background(s) B hypotheses:

$$
\ln \lambda \stackrel{\text { def }}{=} \ln \frac{\mathcal{L}_{S}}{\mathcal{L}_{B}}
$$

- The optimal treatement is to compare the
 signal \& background(s) in a likelihood fit to Ine λ :
- limited by available statistics;
- the relevant information from: S/B fit is the S/B RATIO along the in λ distribution:
- define different SIGNAL BINS m the tail of $l n \lambda$, characterized by different S / B ratios;
- different bins are considered statistically independent.

- Independent measurements from different decay modes \& signal bins are combined within the UNIFIED APPROACH. (G.F. Feldman \& R.D. Cousins, Phys. Rev. D57 (1998) 3873).

THE ANALYSIS - 2

* The large kinematical suppression and the use of multi-dimensional correlations require a precise knowledge of background(s) down to a $\sim 10^{-5}$ level. The final estimate of backgrounds \& efficiencies is obtained from the DATA SIMULATOR technique:
- wse IDENTIFIED ν_{μ} CC in both Data (DS) and Monte Carto (MCS) and replace the $\boldsymbol{\mu}^{-}$by:
- v (i.e nothing)
$0 \quad e^{-}$from $M C$
$0 \quad \tau^{-} \rightarrow X M C$
- compute all efficiencies as \square

- In order to obtain reliable background predictions a 'BLIND ANALYSIS' is used:
- define a signaf region, THE "BOX", by optimizing the overall sensitivity to oscillations;
- dats events falling inside the BOX CANVNOT be analyzed until the bkgnd predictions are finalized,
- the τ^{+}search and the τ^{-}search outside the "BOX" are used as control samples for backgrounds.

THE ANALYSIS - 3

- Three types of TOPOLOGICAL CONSTRAINTS are used for the kinematic selection of the t_{τ} CC signal:

II Jet structure:

In the r hadronic decays a controf of the jet structure is needed since for background(s) the candidate is mostly extracted from the jet.

III Global kinematics.

The rejection of each of the two main background contributions is achieved by constructing TWO appropriate likelihood ratios $\lambda^{\text {NC }}$ and λ^{CC}, exploiting the full event kinematics:

DEFINITION OF THE SIGNAL REGION

NO EVIDENCE FOR OSCILLATIONS

24

FINAL RESULTS OF THE ν_{τ} SEARCH

- NO EVIDENCE for oscillations from the analysis of data:
- NUMBER \& SHAPE of observed events consistent with background.,
- 75\% of the overall sensitivity comes from regrons with only a SMALL BACKGROUND

Tot. bkg.	51.1 ± 5.4	Analysis		Bin	Tot bkg.	$N_{P=1}^{T}$	Data
$N_{P=1}^{\top}$	1 ± 415	$v_{T} \bar{v}_{2} e$	DIS	III	$0.28{ }_{-0.09}^{+0.31}$	903	0
Data	52	$\nu_{T} \bar{v}_{R} e$	DIS	V/	0.25 ± 0.09	1694	0
Syst:	10% on $N_{p=1}^{\tau}, 20 \%$ on bkg	$v_{T} h\left(O_{2}\right)$	DIS	If	0. $055_{-0.03}^{+0.60}$	274	0
		$v_{\tau} h(0)$	DIS	N	$0.122_{-0.05}^{+8.80}$	1246	0
		$\nu_{T} h(1)$)	DIS	V/I	0. $07^{+0.70}$	211	0
		$\left.\nu_{T} h(1)^{\prime}\right)$	DIS	$V I I I$	0.07 ${ }^{+0.701}$	1037	0
$\left\{\begin{array}{l}S_{v_{\mu} \rightarrow v_{\tau}}=2.5 \times 10^{-4} 90 \% \mathrm{CL} \\ L_{\nu_{\mu} \rightarrow u_{r}}=1.7 \times 10^{-4} 90 \% \mathrm{CL} \\ P(\leq L)=39 \%\end{array}\right.$		$v_{-} h(2)$)	DIS	XII	$0.111_{-0.08}^{+0.60}$	197	0
		$v_{\sim} h(1 / 2)$	DIS	XV	$0.20{ }^{+0.78}$	660	1
		$\nu_{T} h(0 / 1)$	DIS	XVI	$0.1 \pm_{-0.70}^{+8.05}$	1348	0
		$v_{\tau} 3 h\left(\pi \pi^{0}\right)$	DIS	N	$0.33_{-0.33}^{+0.65}$	645	0

Design sensitivity 1.9×10^{-4}

Final NOMAD result (data 95-98):

$$
\left\{\begin{array}{l}
S_{v_{u_{H} \rightarrow u_{T}}=2.5 \times 10^{-1} 90 \% \mathrm{CL}}=1.7 \times 10^{-4} 90 \% \mathrm{CL} \\
L_{u_{0} \rightarrow u_{r}}=39 \% \\
P(\leq L)=5
\end{array}\right.
$$

Final NOMAD result (data 95-98):

$$
\left\{\begin{array}{l}
S_{v_{e} \rightarrow v_{T}}=1.2 \times 10^{-2} 90 \% \mathrm{CL} \\
L_{v_{e} \rightarrow v_{T}}=0.8 \times 10^{-2} 90 \% \mathrm{CL} \\
P(\leq L)=43 \%
\end{array}\right\}
$$

CHORTLS Oscillation Search

- v_{τ} appearance in a pure v_{μ} beam
ν_{μ} energy well above τ production threshold
- A target/detector of nuclear emulsions allows direct observation of τ decay

770 Kg of nuclear emulsions divided in 4 stacks perpendicular to the beam
Very high spatial resolution $(\sim 1 \mu \mathrm{~m})$ with 300 tridimensional hits/mm

Suitable to detect the τ decay signature:

- Interaction vertex
- Short τ path $\sim 1 \mathrm{~mm}(c \tau=87 \mu \mathrm{~m})$
- A kink as decay topology
- An electronic detector reconstructs the kinematics

4-years exposure to the WBB from SPS at CERN

- $5 \cdot 10^{19}$ POTs leading to $840,000 v_{\mu}$ CC in CHORUS
- $\mathrm{E}_{\text {protons }}=450 \mathrm{GeV}$
- Intense v_{μ} beam with $E_{v} \sim 27 \mathrm{GeV}$
- Prompt ν_{τ} negligible (~ 0.1 bg events)

Detector layout

- Active target:
nuclear emulsion target
scintillating fibre tracker
- Air-core magnet + tracker:

Hadron momentum (up to 20 GeV)
$\Delta \mathrm{p} / \mathrm{p}=0.035 \mathrm{p}(\mathrm{GeV}) \oplus 0.22$

Calorimeter

- Lead and fibre Calorimeter:
$\Delta \mathrm{E} / \mathrm{E}=32 \% / \sqrt{ } \mathrm{E}$ (hadrons)

$$
=14 \% / \sqrt{ } \mathrm{E} \text { (electrons) }
$$

$\Delta \theta_{\text {hadrons }}=60 \mathrm{mrad} @ 10 \mathrm{GeV}$

- Muon spectrometer:

$$
\Delta \mathrm{p} / \mathrm{p}=10-15 \% \text { up to } 70 \mathrm{GeV}
$$

Target region

- 8 modules of scintillating fibre trackers:
- resolution on extrapolation to CS is 150 mm in position and 2 mrad in angle
- 8 changeable sheets + 4 special sheets:

Refine the predictions to search for a track in emulsion

- Bulk: 4 emulsion stacks ($1.4 \times 1.4 \mathrm{~m}^{2}$)

Each stack is subdivided in 36 plates
Plate: $90 \mu \mathrm{~m}$ transparent plastic film $+350 \mu \mathrm{~m}$ emulsion sheets on both sides

Prase I

- CHORUS was the first emulsion experiment which applied automatic scanning procedures
- History:

$94-97$	Neutrino data taking	2+2 years of emulsion target exposure
$95-98$	Predictions	Data processing for electronic detector Kinematical selection
$96-99$	scan-back + Vertex location	Follow-up of scan-back track in emulsion to reach the vertex
$96-99$	Kink search	Search of decay topologies on the scan-back track
$99-00$	Post scanning	Manual check + background rejection

Kinematicalpreselection

- Decay modes considered:

$$
\begin{array}{ll}
-\rightarrow-{ }^{-} \rightarrow & (B R=18 \%) \\
-\rightarrow \mathrm{h}^{-}\left(\mathrm{n}^{0}\right) & (\mathrm{BR}=50 \%)
\end{array}
$$

- Common to both samples:
- Primary vertex reconstructed by Target Tracker
- Vertex predicted in target emulsion
- The event contains at least one negative track (τ daughter?)
- Some kinematical cut sample-dependent are applied to reduce scanning load

1f sample

- One and only one μ with negative charge
- Based on spectrometer response
- Recovery of short muons by calorimeter measurement
- Selection efficiency: 80\%
- Includes vertex reconstruction, μ identification and μ matching efficiencies
- Momentum cut: $\mathrm{p}_{\mu}<30 \mathrm{GeV}$
- Scanning load reduced by 29\%
- Would reject 15% of v_{τ} interactions if v_{τ} 's have the same energy spectrum of $v_{\mu}{ }^{\prime} s$

0ヶs sample

- No muon identified in the detector
- ≥ 1 negative tracks reconstructed by the fiber trackers
- Contaminations:
$\sim 40 \%$ of events with a misidentified muon
$\sim 6 \%$ of events from neutrinos other than $v_{\mu}{ }^{\prime}$ s
- Momentum cut: $1 \leq \mathrm{p}_{\mu} \leq 20 \mathrm{GeV}$

Rejection of products of $\gamma \quad$ Bad momentum resolution at conversions and secondary interactions
higher energies

No spoke of the magnet crossed

- More than one track can be selected per event

Scanning procedure

- Scan-back: Fibre tracker \rightarrow Interface emulsion \rightarrow Bulk emulsion

- Location efficiency higher for 1μ (40\%) than for $0 \mu(27 \%)$ independently from track angle
- Parent search: look for track segments around the scan-back position

Segments at small distance from the scan-back track are parent candidates

- Large angle - Long path kinks are visible

Tre final sample

Emulsion triggers: 2,305K

1μ		0μ	
Initial sample	713,000	Initial sample (CC contamination)	335,000 $(140,000)$
Momentum cut + angle cut	477,600	≥ 1 negative tracks + Momentum cut + angle cut	122,400
Events scanned	355,395	Events scanned	85,211
Vertex located	143,742	Vertex located	20,081
Selected for eye-scan	11,398	Selected for eye-scan	2,282

Manual scanning

- Operator detailed computer-assisted measurement of:
\checkmark Scan-back track
\checkmark Parent track
\checkmark Other tracks from primary
- To be a decay topology:
\checkmark No black prongs or blobs
\checkmark No recoil
\checkmark No Auger electrons
- Selected events after automatic scanning are 5\% of located events

Expected background

White Kink background

- Poor previous knowledge of $\lambda_{w k}\left(p_{t}, p\right)$
- CHORUS measured
$\lambda_{\mathrm{wk}}\left(\mathrm{P}_{\mathrm{t}}>250 \mathrm{MeV} / \mathrm{c}\right)=21.3 \pm 7 \mathrm{~m}$
$\Rightarrow 2.8 \pm 0.8 \mathrm{WK}$ expected in the signal region (<3 plates from the vertex position)

Post-scanning WKrejection

= Φ_{t} cut: τ opposite to the shower in the transverse plane

- Ldecay $^{\text {cut: } \tau} \tau$ flight length shorter and correlated with phad

Limit evaluation

- Cut combination was optimized to maximize the sensitivity to oscillation:
- Retain 80% of τ signal
- Oscillation probability: $\quad \mathrm{P}=\sin ^{2} 2 \mathrm{~L} \cdot \sin ^{2}\left(\frac{1.27 \cdot \sim \mathrm{~m}^{2} \cdot \mathrm{~L}}{\mathrm{E}}\right)$
- For large $\Delta \mathrm{m}^{2}$:

Upper limit on the number of τ candicates

- Overall systematic error on $\sum_{i}\left(N_{\max }\right)_{i}$ estimated to be 17% and included in the upper limit

Result of Prase I

$$
P_{\mu \tau}<3.410^{-4}
$$

\square
Or for large $\Delta \mathrm{m}^{2} \rightarrow \sin ^{2} 2 \theta_{\mu \tau}<6.810^{-4}$
Using a different approach ${ }^{[2]}$ to CL intervals we can quote

$$
P_{\mu \tau}<2.210^{-4}
$$

[1] T.J unk, NIM A434 (1999) 435
[2] G.J.Feldman and R.D.Cousins, Phys.Rev. D57 (1998) 3873

CHORZLS Prase II

- Scanning speed increased from 0.01 frames/sec in 1994 to 10,000 in 2000
\rightarrow Automatic scanning of a large emulsion volume is now feasible
- New predictions/locations (mainly 0μ) to increase by >80 Kevents the current sample of ~ 164 Kevents (scan-back started)
For each (old and new) located event \rightarrow full event analysis in the vertex region (data-taking started, current speed is ~ 10 Kevents/month)
\rightarrow Improvement of oscillation search to reach the proposal sensitivity
- We will have a big sample of events fully analyzed in the vertex region
\rightarrow Unbiased study of charm production in neutrino interactions
About 300 charm events already identified

Netscan

A new scanning technique!

- Use already located events
- Pick up all track segments in an 8-plates deep fiducial volume around scan-back track

\rightarrow Decay search is not limited to the scan-back track
- Offline analysis of emulsion data

Track segments from 8 plates overlapped

> Eliminate passing- through tracks

Conclusions

- The two CERN neutrino high sensitivity experiments have successfully ended their data taking
- NOMAD has published its final results on oscillations
- CHORUS has published its phase I results and started its phase II analysis

NO EVI DENCE FOR OSCI LLATI ON I N THE EXPLORED REGION

- New techniques have been developed which will be largely applied in future experiments (e.g. Opera)

