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Figure 1: Multiplicity distribution
(Tevatron, the E-735 Group data).

— A: The multiperipheral domain of multiplicity
— B: The thermodynamical limit of multiplicity
— A⇔ B: The VHM domain
• So, we expect that

n >> n̄(s).

• But the cross section is noticeably small:

σn << 10−7σtot.
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1 Why Very High Multiplicity (VHM)?

• The hope to observe new dynamical phenom-
ena or excitation of new degrees of freedom, not
developed in other hadron reactions, was our first
idea.

– We expect that in the VHM domain all de-
grees of freedom should be excited (interaction
becomes ”central”).

– The VHM system is ”cold” (”complete” anni-
hilation of incident energy into particle masses).

• Intensive mixing would result in the ”equilib-
rium” state.

– The ”Gaussian” energy spectrum

– The system becomes ”calm”
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2 What was done in the VHM field?

First publications on the VHM physics:

1. J.Manjavidze and A.Sissakian, JINR Rap. Comm.
2/288 (1988) 13, ibid. 5/31 (1988) 5
The review paper

2. J.Manjavidze and A.Sissakian, Phys. Rep.,
March issue (2001)
accumulates more than 30 of our publications on
the VHM theory.

3. J.Manjavidze and A.Sissakian, talk at Bogoli-
ubov Memorial Conf., 2000, to be published in
El. Part. At. and Nucl.

Semi-inclusive approach was considered in:

4. V.A.Matveev, A.N.Sissakian and
L.Slepchenko, JINR Rep., P2-8670, 1973

The idea of different mechanisms of multiple
production was offered in:

5. A.N.Sissakian and L.A.Slepchenko, Fizika, 10
(1978) 21

6. J.Manjavidze, Phys. Part. and Nucl., 30
(1999) 49
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3 The VHM domain

General definition of the VHM region:

n >> n̄(s) : σn << 10−7σtot.

• If

– εmax - the energy of the fastest particle
– (E − εmax) - the spent energy,

then the inelasticity coefficient

κ =
E − εmax

E
= 1−

εmax
E
≤ 1. (1)

In the VHM region:
εmax
E

= 1− κ << 1. (2)

• Using the energy conservation law (nεmax > E),

n
εmax
E

= n(1− κ) > 1. (3)

As it follows from (2), the multiplicity

n >
1

1− κ
>> 1 (4)

This is an ’ordinary’ definition of the considered
”VHM processes”.
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If the transverse momenta ptr = const., then

– Hadron interaction radii ∼
√

ln s.

– Number of partons ∼(disk area)∼ ln s ∼ n̄(s).

– Each parton may produce ∼ ln s particles.

Therefore,
At n > n̄(s)2 we get out of the standard (mul-
tiperipheral) hadron kinematics.
So,

n << n̄(s)2

is a standard hadron kinematics area.
For Tevatron energies:

n > n̄(s)2 ' 5 000

is the VHM domain.
At the same time,

nmax ' 60 000.

Therefore, the VHM domain for these energies is:

n̄(s)2 ' 5 000 ≤ n << 60 000 ' nmax.

This is the second definition of VHM, based on
the multiperipheral model.
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4 Statistical method

• It is reasonable to depart from an exact defi-
nition of the final state kinematics and consider
the following idea:

– In the VHM domain the entropy should tend to
its maximum value (since the multiplicity n mea-
sures it)

– The system should ‘calm down’ in the VHM
domain.

– To describe the calm systems, a small number
of ”rough” parameters is necessary.

So,
• Nothing will happen if n is measured with ∆n 6=
0 accuracy, since (∆n/n) << 1 is easily attainable
in the VHM region.
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5 ‘Rough’ variable for energy spectrum

• By definition,

σabn (s) =
∫

dωn(q)δ(qa + qb −
n
∑

i=1
qi)|Aabn |2, (5)

where Aabn is the amplitude of n particle produc-
tion in the interaction of particles a and b.
• It can be written in the form:

σn(s) =
∫ +i∞

−i∞

dβ
2π
eβ
√
sρn(β), (6)

where

ρn(β) =
∫







n
∏

i=1

d3qie−βε(qi)

(2π)32ε(qi)







|Aabn |2. (7)

• The most probable value βc in this integral is
defined by the equation of state:

√
s = −

∂
∂β

ln ρn(β). (8)

The solution of this equation will be βc(s, n).

Then βc may be considered as a ‘rough’ variable:
instead of the n energies ε(q1), ε(q2), ..., ε(qn) we
introduce one variable βc in such a way that (as
it follows from (8)) 1/βc is the mean energy, and
the fluctuations of energies near 1/βc are defined
by the Boltzmann factor e−βcε, see (7).
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The ”ideal gas” approximation.

To find the physical meaning of βc, one may con-
sider an example of noninteracting particles, when
An = const. The direct calculation gives

ρn(β) = |An|2 {2πmK1(βm)/β}n ,

where K1 is the Bessel function. Inserting this
expression into (8), we can find that in the non-
relativistic case (n ' nmax)

β0
c =

3
2

(n− 1)
(
√
s− nm)

.

This means that the mean value

< Ekin >=
3
2
T, (9)

where Ekin = (
√
s−nm), is the kinetic energy and

T is the temperature. The eq.(9) is obvious for
the ‘ideal gas’ approximation.
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6 Relaxation of correlations

The k-th correction term is

ρn,k ∼
{

∂3 ln ρn(βc)/∂β3
c

(∂2 ln ρn(βc)/∂β2
c )3/2

}k

Γ
(

3k + 1
2

)

. (10)

Therefore, one should assume that:

∂3 ln ρn(βc)/∂β3
c << (∂2 ln ρn(βc)/∂β2

c )3/2. (11)

to neglect it.

By definition, K3 is the third energy correlator.

• Let

< εl;n >=
1
σn

∫

(ε1dε1)(ε2dε2) · · · (εldεl)
dlσn

dε1dε2 · · · dεl
be the mean value of l particle energies, if the total number
of particles is n.

— dlσn/dε1dε2 · · · dεl – the number of events
— εk – the energy of k-th particle
— n – the total number of produced particles
— σn – the total number of events with multiplicity n.

• Then:

K1(ε, n) =< ε1;n > - mean energy,
K2(ε, n) =< ε2;n > − < ε1;n >2 - dispersion,
K3(ε, n) =< ε3;n > −3 < ε2;n >< ε1;n > +2 < ε1;n >3 - the
third energy correlator,
...
Therefore, if, see (11),

|K3(ε, n)|2/3 << K2(ε1),

then the mean energy of produced particles is a ”good”
variable.
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7 ”Thermodynamical” approximation

If n → nmax then |pi| << m, i = 1,2, ..., n. In this
limit:

– The cross sections are rather small:

σn ∼ (nmax − n)n. (12)

– The inverse temperature

βc(n,E)m =
3
2

n
nmax − n

. (13)

Then:

K1(ε, n) = E

K2(ε, n) =
3n
2β2

c
=

2(nmax − n)2

3m2n
→ 0.

K3(ε, n) = −
3n
β3
c
∼ (nmax − n)3/m3n2 → 0.

Nevertheless,
(

|K3|2/3/K2
)

∼ n−1/3 → 0.

So, the arbitrary massive system should come to
”equilibrium”.

Remark: It’s the first formal proof of this state-
ment.
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The Ehrenfest-Kac model describes the random
”production” and ”absorption” of particles. The
particles production in the ‘event-by-event’ exper-
iments:

Figure 2: Particles production in
the Markovian process.
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Figure 3: Equilibrium over particles number.
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Figure 4: Label correlation functions.
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8 PYTHIA predictions
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Figure 5: PYTHIA prediction for K1.
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Figure 6: PYTHIA prediction for K2.
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Figure 7: PYTHIA prediction for K3.
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Figure 8: PYTHIA prediction for
ratio K2/3

3 /K2.
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9 First questions to the experiment and
perspectives

— The mean value of energy correlation func-
tions?

If

|Kl|2/l << K2, l = 3,4, ...,

it will allow to investigate:

(A) The collective phenomena (phase transition,
etc.) at the given low temperature and high den-
sity system,

(B) The properties of the ”calm” colour (quark)
plasma state

— Produced particles momentum spectra?

(C) The production process becomes hard: the
ratio of the mean values

R(n, s) =
{

< p⊥ >/< p‖ >
}

< π/2.

— The vacuum structure?

(D)The isotopic spin fluctuations are ”anoma-
lous” over

C = nc/n0.
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• For today we already have a theoretical basis
for this generator. It is based on the new pertur-
bation theory, published in several mathematical
papers:

J.Manjavidze, Journ. Math. Phys., 41 (2000)
5710

J.Manjavidze and A.Sissakian, Theor. and Math.
Phys., 123 (2000) 776

J.Manjavidze and A.Sissakian, Journ. Math.
Phys., 42 (2001) 641

J.Manjavidze and A.Sissakian, Phys. Rep., in
press (2001)
This formalism includes the perturbative QCD as
the definite approximation only.
The generating functional:

ρ(β, z) = e−iK
∫

D(ξ, η)e−2iU(u,e)eR(β,z;u)

It contains:
• K =

∫

dtdt′Θ(t− t′)
{

δ
δεξ
· δδξ + δ

δεη ·
δ
δη

}

• Θ(t− t′) − Green function
• R(β, z;u) =

∫

(d3q/ε(q))e−βε(q)z(q) |Γ(q;u)|2

• Γ(q, u) =
∫

dxeiqx(∂2
µ +m2)u(x; ξ, η)

• u(x; ξ, η) − solution of Lagrange equation
• ξ, η − constants of integration
• D(ξ, η) =

∏

t dξ(t)δη(t)δ(ξ̇ − v(η))δ(η̇)
• U(u, e) − describes interaction
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