Search for New Physics at HERA

XV Rencontres de Physique de la Vallee d'Aoste La Thuile, 7/Mar/2001

Masahiro Kuze (KEK-IPNS /ZEUS) On behalf of H1 and ZEUS Collaborations

HERA ep collider @ DESY

- $\sqrt{s} = 300 \text{ GeV} (-1997), 318 \text{ GeV} (1998 -)$
- ~110 pb⁻¹ e⁺p and ~15 pb⁻¹e⁻p data collected per exp't until 2000
- Kinematics of deep inelatic scattering:

- $Q^2 = -(4$ -momentum of propagator)²
- x = fractional momentum of proton carried by struck quark
- $y = Q^2/sx = (1 \cos\theta^*)/2$ θ^* : scattering angle in eq rest frame

Signals of physics beyond SM at HERA

- e-q resonances (Leptoquarks)
 - Peak in m= $\sqrt{(sx)}$, decay to eq or vq'
- Squark in R-parity violating SUSY
 - Production similar to LQ but more decay modes (q+gaugino)

• Contact Interactions

- Physics at higher scale $(\Lambda \gg \sqrt{s})$ 'felt' at highest Q² of HERA
- Large Extra Dimensions, compositeness, ...
- Variant: LFV-mediating interactions $(e-\mu, e-\tau)$ or FCNC transition $(u \rightarrow t : single top)$
- Excitation of Fermions
 - e^*, v^*, q^* if fermions composite
 - Peak in f-V invariant mass

Leptoquarks

- Carry both L and B numbers
- Buchmüller-Rückl-Wyler (BRW) model:
 - $SU(3) \times SU(2) \times U(1)$ invariance
 - LQs only couple to chiral SM fermions
 - 14 species, 7 scalars and 7 vectors
 - Decays: 100% to eq, 100% to vq or 50% to each
- Production at HERA $\propto \lambda^2$ (Yukawa coupling)
 - e⁺p and e⁻p sensitive to different LQ (valence >> sea quark density)
 - − Decay distribution: flat in y (scalar) or $(1-y)^2$ (vector) → signal prominent at high y where NC DIS ($\propto 1/y^2$) suppressed
- Old H1 and ZEUS e⁺p data (especially in 1994-96) showed excess of high-mass, high-y events.
 →Results from new e⁺p data (at higher √s) taken in 1999+2000(partially) were shown last summer.

Resonance search: old and new data

• Excess in old data not confirmed by new data by both experiments

Leptoquark limits

- BRW framework:
 λ vs. mass
 - TeVatron: pair production, independent of λ
 - LEP: virtual effects in $e^+e^- \rightarrow$ hadrons

- General case: stay away from BRW model
 - Treat $\beta(LQ \rightarrow eq)$ as free
 - If β(eq)+ β(vq)=1:
 Combining NC and CC events,
 limis almost independent on β
 - TeVatron limits degrade at low β

La Thuile 2001 - Search for New Physics at HERA

R-parity violating SUSY

- $R_P \equiv (-1)^{F+2S} = (-1)^{L+3B+2S}$ R_P violation \rightarrow sparticles singly produced and LSP not stable.
- $L_i Q_j D_k$ coupling interesting for HERA: eq \rightarrow squark (like LQ)
- Final states more complicated than LQ: χ⁰ decays with the same coupling to e[±]qq or vqq ("wrong sign" lepton gives b.g. free channel)
- Also cascade decays $\chi_2 \rightarrow \chi_1$ etc. multi-jet / multi-lepton final states
- No evidence found in 94-97 e⁺p data \rightarrow limits set in unconstrained MSSM (squark mass independent of μ , M₂, tan β) or in mSUGRA

Limits in SUSY parameter space

• Unconstrained MSSM: limits variation in parameter scan

 mSUGRA: For reasonably large λ' values, HERA exclusion exceeds TeVatron limits

Contact Interactions

- Look for deviation at highest Q^2 Probed distance =1/Q ~0.001 fm for Q^2 ~10⁴ GeV²
- General *eeqq* CI: limits depend on chirality combination (LL, LR, VV, AA....), up to 9 TeV

- Comparable to LEP ($e^+e^- \rightarrow hadrons$), TeVatron (Drell-Yan)
- Limits also set on some specific models:

Lepton Flavor Violation

$e \leftrightarrow \tau$			F = 0				
$q_i q_j$	$\begin{array}{c} S^L_{1/2} \\ e^+ u \end{array}$	$S^R_{1/2}_{e^+(u+d)}$	$\tilde{S}^L_{1/2}_{e^+d}$	$\begin{array}{c} V_0^L \\ {}_{e^+d} \end{array}$	$\begin{array}{c} V_0^R \\ {}_{e^+d} \end{array}$	$\begin{array}{c} \tilde{V}_0^R \\ {}^{e^+u} \end{array}$	$V_1^L \\ e^+(\sqrt{2}u+d)$
11	$\begin{array}{c} \tau \rightarrow \pi e \\ 0.0032 \\ \textbf{0.030} \end{array}$	$\begin{aligned} \tau &\to \pi e \\ 0.0016 \\ 0.025 \end{aligned}$	$\begin{aligned} \tau &\to \pi e \\ 0.0032 \\ 0.046 \end{aligned}$	G_F 0.002 0.033	$\begin{array}{c} \tau \rightarrow \pi e \\ 0.0016 \\ \textbf{0.033} \end{array}$	$\begin{aligned} \tau &\to \pi e \\ 0.0016 \\ 0.024 \end{aligned}$	G_F 0.002 0.012
12	<i>H1:</i> 0.047	$\tau \to K e \\ 0.05 \\ 0.025 \\ \hline$	$\tau \to K e \\ 0.05 \\ 0.046 \\ \hline$	$\tau \to K e \\ 0.03 \\ 0.036$	$\tau \to K e \\ 0.03 \\ 0.036$	<i>H1:</i> 0.045 0.026	$ \begin{array}{c} \mathrm{K} \rightarrow \pi \nu \bar{\nu} \\ 2.5 \cdot 10^{-6} \\ 0.012 \end{array} $
13	*	$\begin{array}{c} B \rightarrow \tau e \ X \\ 0.08 \\ \hline 0.049 \end{array}$	$\begin{array}{c} \mathbf{B} \rightarrow \tau \mathbf{e} \ \mathbf{X} \\ 0.08 \\ \hline 0.049 \end{array}$	$\begin{array}{c} \mathbf{B} \rightarrow l\nu \mathbf{X} \\ 0.02 \\ 0.044 \end{array}$	$\begin{array}{c} B \rightarrow \tau e \ X \\ 0.04 \\ \hline 0.044 \end{array}$	*	$B \rightarrow l\nu X$ 0.02 0.044
2 1	<i>H1:</i> 0.15	$\tau \rightarrow \mathbf{K} e$ 0.05 0.092	$\tau \to K e \\ 0.05 \\ 0.11$	$\tau \rightarrow \mathbf{K} = 0.03$ 0.049	$\tau \rightarrow \mathbf{K} = 0.03$ 0.049	<i>H1:</i> 0.073 0.061	$K \rightarrow \pi \nu \bar{\nu}$ $2.5 \cdot 10^{-6}$ 0.026
2 2	$\begin{aligned} \tau &\to e\gamma \\ 0.03 \\ 0.19 \end{aligned}$	$ au o e\gamma \\ 0.02 \\ 0.10 \\ extbf{0.10}$	<i>H1:</i> 0.13 0.12	<i>H1:</i> 0.076 0.061	<i>H1:</i> 0.076 0.061	<i>H1:</i> 0.107	<i>H1:</i> 0.044 0.041
2 3	*	$\begin{array}{c} B \rightarrow \tau e \ X \\ 0.08 \\ \hline 0.15 \end{array}$	$\begin{array}{c} B \rightarrow \tau e X \\ 0.08 \\ \hline 0.15 \end{array}$	$B \rightarrow l\nu X$ 0.02 0.10	$\begin{array}{c} \mathrm{B} \rightarrow \tau \mathrm{e} \ \mathrm{X} \\ 0.04 \\ 0.10 \end{array}$	*	$B \rightarrow l\nu X$ 0.02 0.10
3 1	*	$\begin{array}{c} \mathbf{B} \rightarrow \tau \mathbf{e} \ \mathbf{X} \\ 0.08 \\ 0.16 \end{array}$	$B \rightarrow \tau e X$ 0.08 0.16	$V_{ub} \\ 0.002 \\ 0.052$	$\begin{array}{c} \mathbf{B} \rightarrow \tau \mathbf{e} \ \mathbf{X} \\ 0.04 \\ \hline 0.052 \end{array}$	*	$V_{ub} \ 0.002 \ 0.052$
3 2	*	$\begin{array}{c} \mathrm{B} \rightarrow \tau \mathrm{e} \ \mathrm{X} \\ 0.08 \\ 0.20 \end{array}$	$\begin{array}{c} \mathrm{B} \rightarrow \tau \mathrm{e} \ \mathrm{X} \\ 0.08 \\ 0.20 \end{array}$	$B \rightarrow l\nu X$ 0.02 0.073	$\begin{array}{c} \mathbf{B} \rightarrow \tau \mathbf{e} \ \mathbf{X} \\ 0.04 \\ \hline 0.073 \end{array}$	*	$B \rightarrow l\nu X$ 0.02 0.073
33	*	<i>H1:</i> 0.23 0.28	<i>H1:</i> 0.23 0.28	$ au o e\gamma$ 0.51 0.14	$\begin{array}{c} \tau \rightarrow e\gamma \\ 0.51 \\ \textbf{0.14} \end{array}$	*	<i>H1:</i> 0.14 0.14

- Variant of CI: $eq \rightarrow lq \ (l=\mu,\tau)$ mediated by LFV Leptoquarks
- Spectacular signal; no event found in H1/ZEUS 94-97 data
- Limits expressed in $\lambda_{eq}\lambda_{lq'}/M^2 (10^{-4}GeV^{-2})$ for 3×3 (q,q') generation combinations
- For light-quark only cases, limits from low-energy exp'ts superior, but HERA has good (or unique) sensitivity when heavy quarks involved.

ZEUS preliminary

Masahiro.Kuze@kek.jp

Excited Fermions

Events

2

ZEUS 98+99 Preliminary

ZEUS 98+99 Data Background MC 250 GeV v* MC

- Composite fermions \rightarrow excited states
- Hagiwara-Komamiya-Zeppenfeld $L_{ff^*} \propto [f \cdot SU(2) + f' \cdot U(1) + f_s \cdot SU(3)] / \Lambda$
- v^* example \rightarrow Sensitivity extends above LEP2 er

Something unexpected: high-Pt leptons

- Events with high-Pt isolated lepton and missing calorimeter Pt
- At large Pt^X (hadronic Pt), SM prediction dominated by W production

• H1 observes excess of events at large P_T^X

H1 preliminary	Electrons	Muons	
1994-2000 e ⁺ p 82 pb ⁻¹	Observed/expected (W)	Observed/expected (W)	
$P_T^X > 25 \text{ GeV}$	3 / 1.05±0.27 (0.83)	6 / 1.21±0.32 (1.01)	
$P_{T}^{X} > 40 \text{ GeV}$	2/0.33±0.10 (0.31)	4 / 0.46±0.13 (0.43)	

New ZEUS results with 2000 data

- ZEUS saw no such excess from 1994–1999; update with 2000 data shown for the 1st time
- Main cuts:
 - Pt(CAL) > 20 GeV, Pt(track) > 10 GeV
 - Dtrk > 0.5 (in η - ϕ) from other tracks
 - Djet > 1.0 from hadronic jets
- 10 e & 7 μ events from 1994–2000 (2 e & 3 μ from 2000 data) Note: cuts at this stage looser than H1 (No Pt^x cut; SM not dominated by W)

• Event rate consistent with SM prediction

ZEUS preliminary	Electrons	Muons	
1994-2000	Observed/expected (W)	Observed/expected (W)	
e ⁺ p 114 pb ⁻¹	7/9.9±1.6 (2.4)	7/4.6±0.6 (1.1)	
e ⁻ p 16 pb ⁻¹	3 / 1.1±0.4 (0.3)	0 / 0.8±0.1 (0.2)	
Total 130 pb ⁻¹	10 / 11.0±1.6 (2.7)	7 / 5.4±0.7 (1.3)	

Masahiro.Kuze@kek.jp

Electron events: kinematical distribution

- Overall distribution consistent with SM (dominated by NC DIS)
- Small acoplanarity and small missing Pt

Muon events: kinematical distribution

- Overall distribution consistent with SM (dominated by γγ→μμ)
- Most events have µ & jet back-to-back, balancing net missing Pt
 - One exceptional event with
 large acoplanarity and large
 transverse mass
 (see next)

Comparison of events at large Pt^X

- Apply further cuts to suppress non-W SM processes
 - Reject if 2nd μ found. Require net missing Pt > 12 GeV for μ events (suppress $\gamma\gamma$)
 - Require E-Pz < 45 GeV for e events (suppress NC DIS)
- ZEUS events at large Pt^X:

ZEUS preliminary	Electrons	Muons	
1994-2000 e [±] p 130 pb ⁻¹	Observed/expected (W)	Observed/expected (W)	
$P_{T}^{X} > 25 \text{ GeV}$	1/1.14±0.06 (1.10)	1 / 1.29±0.16 (0.95)	
$P_T^X > 40 \text{ GeV}$	0/0.46±0.03 (0.46)	0/0.50±0.08 (0.41)	

1 new μ event at Pt^X > 25 GeV, but consistent with total expectation

• For comparison: limit H1 track polar-angle to ZEUS range (0.3–2.0rad)

H1 preliminary	Electrons	Muons	
1994-2000 e ⁺ p 82 pb ⁻¹	Observed/expected (W)	Observed/expected (W)	
$P_T^X > 25 \text{ GeV}$	3/0.84±0.22 (0.67)	6 / 0.94±0.26 (0.78)	
$P_T^X > 40 \text{ GeV}$	2/0.27±0.08 (0.26)	4 / 0.35±0.10 (0.33)	Errors include systematics

All events from nominal result remain: excess of events

ZEUS μ event with large Pt^X

 $P_T(\mu^+)=38^{+20}_{-10}$ GeV, $P_T^X=36$ GeV, Acoptanarity=1.9, $P_T=61^{+17}_{-8}$ GeV, $M_T=91^{+39}_{-19}$ GeV

Single top production with FCNC

- Lepton + missingPt + high-Et jet : signature of $t \rightarrow bW \rightarrow blv$
- Single-top from SM negligible (FCNC); observation would imply beyond SM
- Dtrk>0.5, Djet>1.0, then $Pt^X > 40 \text{ GeV}$ $\rightarrow 0$ event remained where 1.1 expected
- $L = (ee_q/\Lambda)t \sigma_{\mu\nu}q_{\nu}k_{\gamma}uA^{\mu} (\Lambda=m_{top})$ \rightarrow limit on $k_{tu\gamma}$ from cross-section limits (see Belyaev+Kidonakis hep-ph/0102072 for recent calc.)
- m_{top} dependence: $\pm 5 \text{GeV} \rightarrow \pm 20\%$ on σ
- LEP: $e^+e^- \rightarrow (\gamma, Z) \rightarrow tc$ (tu)
- TeVatron: rare top decays $t \rightarrow \gamma q$, Zq
- HERA results give strongest constraint on t-u-γ FCNC coupling

Summary and Future Prospects

- "HERA 1": ~110 pb⁻¹ e⁺p and ~15 pb⁻¹e⁻p data per experiment.
 So far no evidence for new physics; yielded new constraints on
 - Leptoquarks
 - Squarks in R-parity violating SUSY
 - eeqq Contact Interactions, Large Extra Dimensions, Quark form factor
 - Lepton-Flavor Violation
 - Excited electrons, neutrinos, quarks
- Limits comparable/complementary to LEP/TeVatron searches.
- H1 isolated leptons intriguing, though whole ZEUS data consistent with SM. Limits on single-top production gives strong constraint on FCNC coupling.
- Shutdown since fall 2000: luminosity upgrade = focusing magnets inside detector. Major modifications in the machine and detectors (+ new detector components, e.g. ZEUS will also have micro-vtx).
- Restart this summer: "HERA 2" will give $\sim 1 \text{ fb}^{-1}$ data in ~ 5 years.

Competition with TeVatron RUN II

- Example: LQ or Squarks in RpV SUSY
 If Yukawa coupling λ large enough favorably for HERA, it will detect new physics with 10 times more data to come.
- Otherwise, for some models RUN II will close its discovery window.
 e.g. BRW LQs which decay 100% to eq will be probed beyond HERA CM energy after 1-2 fb⁻¹ of TeVatron data.
- There are however also cases where TeV. Future Sensitivity potential does not reach HERA; e.g. when LQ has low decay B.R. to eq. \rightarrow $\mathbf{g}^{0.9}$
- Also some models not probed at TeV. extensively: e.g. LFV, e*, v*
- Stay tuned for excitement for the next "post-LEP, pre-LHC" era !

