TOP PHYSICS						
at the						
LINEAR COLLIDER						
André H. Hoang MPI Munich						
Outline						
• Introduction: Past, Present and Future						
• Linear Collider Specialties						
• Top-Antitop at Threshold						
• Top-Antitop at Higher Energies						
• Summary						

The Top Quark in Numbers

Pre-Top-Discovery Era < 1995

Indirect hits toward (t, b)_L doublet flavor structure
▷ CP in K physics, B - B̄ mixing, GIM mechanism
▷ bottom singlet causes FCNC: Γ_{B→μμ} ~ Γ_{B→μνX} experiment: Γ_{B→μμ} < 10⁻⁵ Γ_{B→μνX}
▷ isospin of b from e⁺e⁻ → b̄b angular distr.

(PETRA, TRISTAN)

• Ew precision tests predict m_t from isospin breaking

 \rightarrow required precision of m_t for a given δM_w

	Run I	Run II	LHC	LC(GIGAZ)
δM_w	40 MeV	20 MeV	20 MeV	6 MeV
δm_t	6 GeV	3 GeV	3 GeV	1 GeV
expected δm_t		2-3 GeV	1-2 GeV	< 0.1-0.2 GeV

Post-Top-Discovery Era > 1995

- Top precision measurements: top = top ?
- Top as unique QCD laboratory:
 Γ_t ~ 1.5 GeV ≫ Λ_{QCD}: no toponia, T-mesons
 → dynamics dominated by perturbative QCD
 → top "almost real": m_t, spin, EDM,... observables

• Top as tool to uncover true "Next-SM"

- ▷ Higgs model: $g_{tth} = \frac{\sqrt{2}m_t}{v}$ ("Goldberger-Treiman") ▷ 4th generation: $V_{tb} \ll 1, \Gamma_t \ll \Gamma_t^{SM}$
- \triangleright extended gauge groups: new gauge bosons affect top
- ▷ SUSY: new decay & production mechanisms, \tilde{t} , ...

▷ Large extra dimensions: KK gravitons \leftrightarrow top

⊳ etc., etc.

Next-SM Era > 200?

- \Rightarrow Example: SUSY (MSSM) \Leftarrow
- \rightarrow test consistency of Next-SM, constrain par. space
 - Higgs mass measured, SUSY broken $m_{h,\text{light}}^2 = M_z^2 + G_F m_t^4 \ln\left(\frac{m_{\tilde{t}}}{m_t}\right) + \dots$

 \rightarrow required precision of m_t for a given $\delta m_{h,\text{light}}$

	LHC	LC
$\delta m_{h,{ m light}}$	1 GeV	50 MeV
δm_{t}	4 GeV	200 MeV
expected δm_t	1-2 GeV	100-200 MeV

- SUSY top decays:
 ▷ t → H⁺b, t ˜ χ⁰
 ▷ FCNC, 𝒴 top couplings
- Light top squarks $m_{\tilde{t}} \ll M_{\rm SUSY}$ \rightarrow off-diagonal element $\propto m_t M_{\rm SUSY}$ in stop mass matrix

⇒ Aim of future colliders for top physics: Measure all top properties as accurate as possible! m_t , V_{tb} , Γ_t , g_{tth} , couplings, spin, rare decays, FCNC, CP-properties, production mechanism, etc.

Linear Collider and Top Physics

- e^+e^- collider, $E_{\rm cm} = M_z, 350 \,{\rm GeV} 5 \,{\rm TeV}$
- Lumi: $10^{34} 10^{35} \text{ cm}^{-2} \text{s}^{-1} \rightarrow 100 1000 \text{ fb}^{-1}/\text{year}$

•	Designs:	TESLA:	supercond.,	$E_{ m cm}^{ m max} \sim 1~{ m TeV}$
		N/JLC:	nor. cond.,	$E_{ m cm}^{ m max} \lesssim 1~{ m TeV}$
		CLIC:	nor. cond.,	$E_{ m cm}^{ m max} \lesssim 5~{ m TeV}$

• $e^+e^- \xrightarrow{\gamma, Z} t\bar{t}$ main mechanism for $E_{\rm cm} < 1 \,{\rm TeV}$

La Thuile, March 4–10, 2001

LC Specialties

- Statistics: $LC \sim 10^5 t\bar{t}$ pairs $\rightarrow \sigma_{tot} < 1 \text{ pb}$ $LHC \sim 10^8 t\bar{t}$ pairs $\rightarrow \sigma_{tot} \approx 850 \text{ pb}$
- E_{cm} well known, tunable → threshold & continuum
 ▷ ISR+beam strahlung+energy spread ⇒ lumi spect.
 ▷ tune QCD phases at threshold ⇒ CP studies
- Electron beam polarizable: → e⁻: 80%
 reduction of background (e.g. W⁺W⁻ with RH e⁻)
 tuning to enhance signals (non-SM) for spin obs.

• Clean environment:

smaller background, more events used for physics
systematic uncertainties small

• $\gamma\gamma$, γe options:

- unique spin configurations
 alternative production mechanisms, single top
- ⇒ I'm going to talk about <u>some</u> interesting aspects of top physics at the LC that take advantage of the special LC features.

André H. Hoang, MPI Munich

Top Physics at the $t\bar{t}$ **Threshold**

▷ facilitates spin, polarization measurements

QCD phases scale with binding energy E_{cm} − 2m_t
 QCD phases are tunable and calculable
 QCD phases compete with new CP phases

Top Mass Measurement at Threshold

• **Top mass reconstruction** ⇒ standard

• Threshold Scan

La Thuile, March 4–10, 2001

New Calculation of the Cross Section

La Thuile, March 4–10, 2001

Top Physics at Higher Energies

$E_{cm} \gtrsim 2m_t + 10 \text{ GeV}$

• Top mass

- invariant mass reconstruction for single top
- \triangleright top still slow for $E_{\rm cm} = 500 \, {\rm GeV}$
- limitation: → top colored, on-shell pole unphysical (interconnection, jet energy, gluon radiation, ...)
 ⇒ δm_t^{syst} > Λ_{QCD} ~ 300 MeV
 ECFA/DESY (1991): δm_t = 500 MeV
 G.P. Yeh (1999): δm_t = 200 MeV (no systematics)

• Top Yukawa coupling $\rightarrow e^+e^- \rightarrow t\bar{t}H$

Juste etal. (1999): $E_{\rm cm} = 800 \text{ GeV}, m_h = 120 \text{ GeV},$ $\mathcal{L} = 1000 \,{\rm fb}^{-1} \ (\sim 3 \text{ years } \acute{a} \ 10^{34} \,{\rm cm}^{-2} {\rm s}^{-1})$ $\Rightarrow \delta g_{tth}/g_{tth} \sim 5.5\% \ (q\bar{q}b\bar{b}b\bar{b}\ell\nu, q\bar{q}q\bar{q}b\bar{b}b\bar{b}$ channels) $\rightarrow {\rm LHC}: \delta g_{tth}/g_{tth} < 16\%, \ \mathcal{L} = 100 \,{\rm fb}^{-1}$

• Strong coupling

 $\triangleright \sigma_{\rm tot}$ maximal for $E_{\rm cm} \approx 400 \, {\rm GeV}$

 $\rightarrow \alpha_s$ from radiative corrections

 \rightarrow systematic error dominated by luminosity spectrum Bernreuther (1999): $\delta \alpha_S(M_z) \sim 0.007$

Conclusions & Outlook

- Top quark is a window to "New Physics" m_t large \rightarrow EWSB, non-SM effects
- Top quark lifetime $\ll 1/\Lambda_{QCD}$ \rightarrow unique QCD laboratory \rightarrow almost "real particle" \rightarrow ew physics
- Measure top quark as precise as possible
 ⇒ be prepared for surprises
- <u>Linear Collider:</u> versatile instrument for precision top studies (and much more !)
 - \rightarrow complementary/competitive to hadron colliders
 - $\triangleright E_{\rm cm}$ tunable, well known $\rightarrow t\bar{t}$ threshold
 - ▷ clean, background-low environment
 - ▷ LC: 10^5 tops \longleftrightarrow LHC: 10^8 tops
 - ▷ beam polarization
 - $\triangleright \gamma \gamma, \gamma e \text{ options}$

La Thuile, March 4–10, 2001