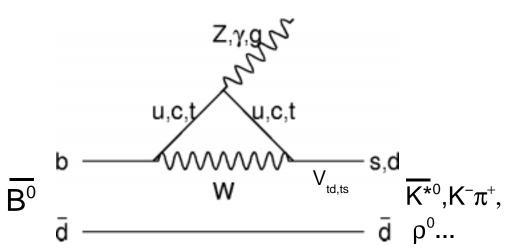
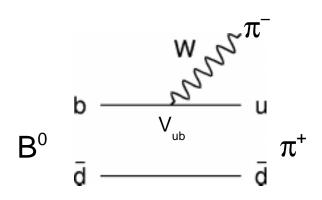
Charmless B Decays at Babar

$$B^0 \rightarrow K^{*0} \gamma$$
 and $B^0 \rightarrow \pi^+ \pi^-, K^+ \pi^-, K^+ K^-$

Mark Convery

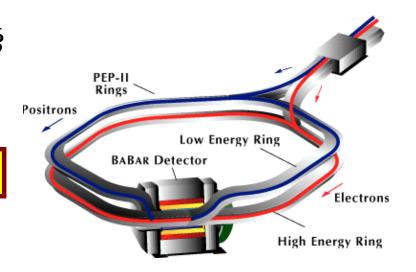

Stanford Linear Accelerator Center


A national laboratory funded by the Department of Energy

Outline

- Theory and Motivation
- PEP-II
- BaBar Detector
- Backgrounds
- Kinematic Variables
- $B^0 \rightarrow K^{*0} \gamma$ Analysis (Branching fraction and A_{CP})
- $B^0 \rightarrow \pi^+ \pi^-, K^+ \pi^-, K^+ K^-$ Analysis (Branching fraction)
- Conclusions

Theory and Motivation

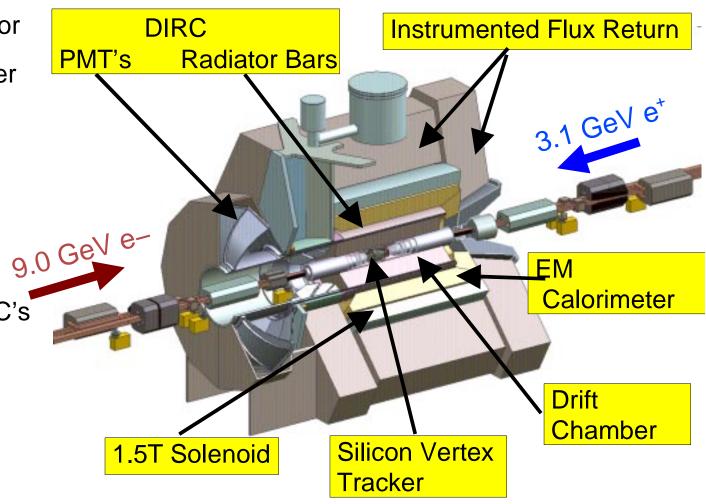


- Top quark dominates "penguin" diagrams
 - Low energy access to high mass phenomena (V_{td})
 - Possibility of non–SM physics,e.g. H+
 - Possible direct CP violation
- Tree diagram potentially very useful
 - $_{-}$ CP-eigenstate with M \propto V $_{_{\text{ub}}}$
 - Time–dependent CP–asymmetry to measure α
 - Unless b→dg spoils it
 - Particle ID to distinguish π from K

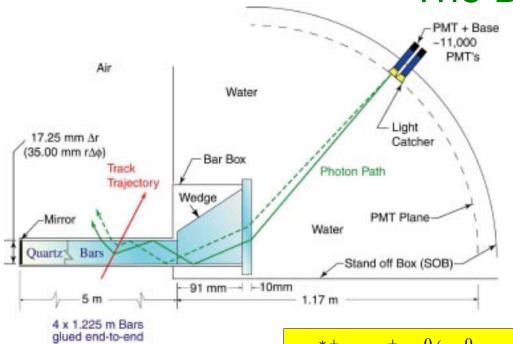
The PEP-II B Factory

- Asymmetric collider $e^+e^- \rightarrow Y(4s) \rightarrow B\bar{B}$ $E_{e} = 9.0 \, GeV, E_{e} = 3.1 \, GeV$
- "Run 1" from Nov '99 Oct '00
- Peak luminosity $L=3.3\times10^{33}/cm^2sec$

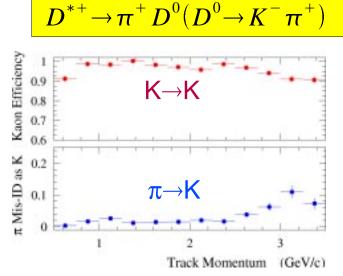
 - Already at design
 - 4x higher than previous best (CESR)
- **Integrated Luminosity**
 - $\approx 21 \text{ fb}^{-1} \text{ on } \underline{\text{resonance}}$ \Rightarrow (22.7 \pm 0.4) \times 10⁶ BB pairs
 - ≈ 3 fb⁻¹ off resonance

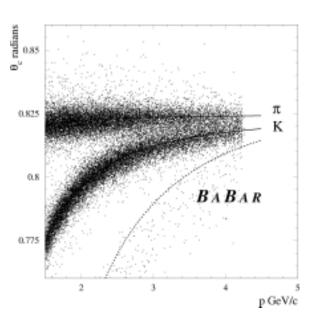

- Asymmetric energies required for time dependent **CP** asymmetries
- Bit of a nuisance for charmless BR's

$$2.4\,GeV < p_{2-body,CMS} < 2.8\,GeV \\ 2\,GeV < p_{2-body,lab} < 4\,GeV$$


La Thuile, March 8, 2001

BaBar Detector

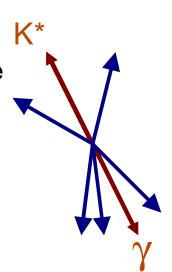

- 5 Layer Vertex Detector
- 40 Layer Drift Chamber
- DIRC Cherenkov Counter
- Csl Electromagnetic Calorimeter
- Flux Return instrumented with RPC's
- Super-conducting Solenoid

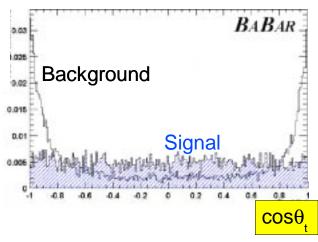


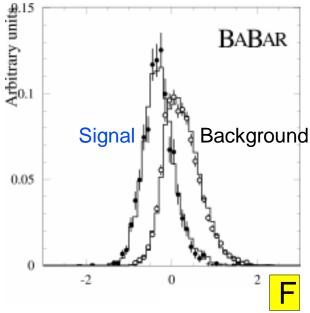
The DIRC

- Detector of Internally Reflected Cherenkov uses light trapped in radiator bar
- Light detected by an array of 11,000 PMT's
- Provides excellent π/K separation

La Thuile, March 8, 2001


Mark Convery, SLAC


Analysis Procedure


- Similar procedure for $B^0 \rightarrow K^{*0} \gamma$ and for $B^0 \rightarrow \pi^+ \pi^-, K^+ \pi^-, K^+ K^-$
- Compose B candidates from selected tracks, photons, π^{0} 's
- Reject background using event shape variables.
- Measure background levels using off–resonance data, or on–resonance sidebands
- Fit for N_{sig} using ML Fit to kinematic variables
- Calculate signal efficiency in Monte Carlo. Adjust for tracking eff., etc.

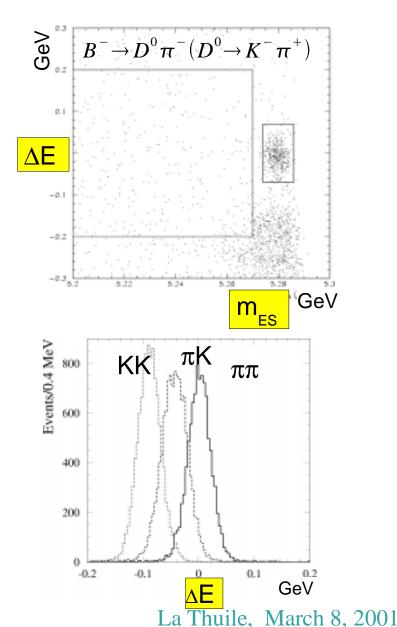
Background Suppression

- $\sigma(e^+e^- \rightarrow q \bar{q}) \approx 3 \sigma(e^+e^- \rightarrow B \bar{B})$ background mostly continuum
- Can be distinguished by "jetty" shape versus spherical BB shape
- Can simply use angle between candidate axis and thrust of remainder of event (cosθ,)
- Or, more sophisticated, measure energy in 9 concentric cones (x_i) around candidate axis and adjust coefficients (α_i) to optimize separation in Fisher Discriminant (CLEO)

La Thuile, March 8, 2001

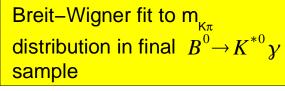
Kinematic Variables

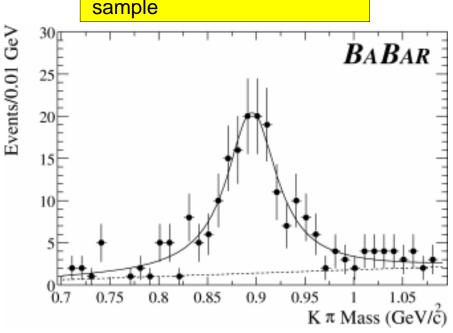
In symmetric collider, use


$$- m_B = \sqrt{E_{beam}^2 - p_B^2}$$

-
$$\Delta E = E_{\scriptscriptstyle B} - E_{\scriptscriptstyle beam}$$
 assume m_{π}

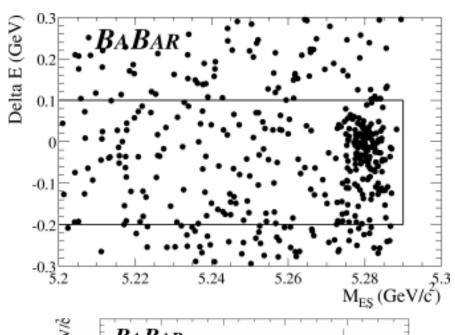
- shifts due to daughter mass
- For asymmetric collider, want to avoid assigning masses to daughters
 - Define $m_{ES} = \sqrt{(\frac{1}{2}s + \vec{p}_0 \cdot \vec{p}_B)^2 / E_0^2 p_B^2}$
 - Uses only lab quantities
 - Identical to m_B when evaluated in CM frame

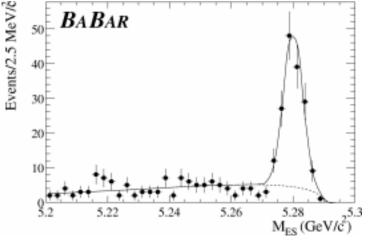

-
$$\Delta E = E_B^* - \sqrt{s/2}$$
 assume m_π


 also has shifts due to true daughter mass

$B^0 \rightarrow K^{*0} \gamma$ Candidates

- Photon selection $(\varepsilon_{\gamma} = 0.77)$
 - 2.3 Gev < E_{cms} < 2.8 GeV</p>
 - $-0.73 < \cos\theta_{lab} < 0.9$
 - Reject π^0 's
 - with shower shape cuts
 - $m_{\gamma\gamma} \neq m_{\pi 0}$
- $K^{*0} \rightarrow K^+ \pi^-$ selection ($\varepsilon_{K^*} = 0.56$)
 - Dirc PID
 - 0.796 GeV < $m_{K\pi}$ < 0.996 GeV
 - $-\left|\cos\theta_{\text{helicity}}(K^*,K^*)\right| < 0.75$





$B^0 \rightarrow K^* \gamma$ Mass Fit

- Cuts
 - $-200 \text{ MeV} < \Delta E^* < 100 \text{ MeV}$
 - $\left| \cos \theta_{\star}^{*} < 0.8 \right|$
 - $|\cos\theta_{\rm B}^* < 0.75|$ (polar angle of B candidate)
- Fit to m_{ES} distribution
 - "Argus" Function for background. Shape taken from off-peak data
 - Gaussian for signal with floating mean, sigma and signal fraction

$$N_{sig} = 139.2 \pm 13.1 \text{ events}$$

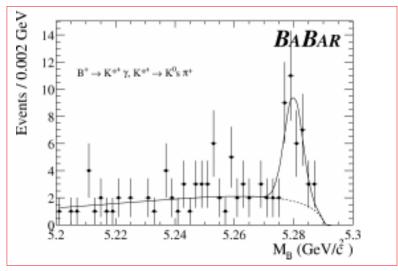
$B^0 \rightarrow K^{*0} \gamma$ Branching Ratio and Asymmetry

- Efficiency calculated in Monte Carlo with corrections for
 - Tracking efficiency
 - Photon efficiency
 - PID efficiency
- $\varepsilon = 0.209 \pm 0.013_{\text{syst}}$ $BR(B^0 \to K^{*0} \gamma) = \frac{N_{\text{signal}}}{(N_{B\bar{B}} * \epsilon * B_{K*})}$
- Systematics mostly from data-derived efficiency corrections

$$BR(B^0 \to K^{*0} \gamma) = (4.39 \pm 0.41_{\text{stat}} \pm 0.27_{\text{syst}}) \times 10^{-5}$$

BaBar Preliminary

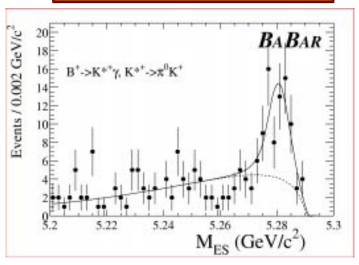
Asymmetry defined as


$$A_{CP} = \frac{N(\bar{B^0} \to \bar{K^{*0}} \gamma) - N(\bar{B^0} \to \bar{K^{*0}} \gamma)}{N(\bar{B^0} \to \bar{K^{*0}} \gamma) + N(\bar{B^0} \to \bar{K^{*0}} \gamma)}$$

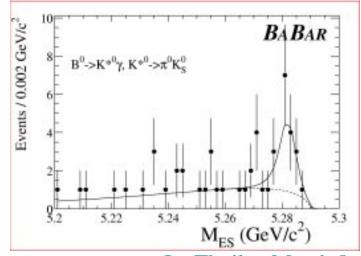
$$A_{cp} = -0.035 \pm 0.094 \pm 0.022$$

BaBar Preliminary

Other $B \rightarrow K^* \gamma$ Modes


Signals have been observed in three other $B \rightarrow K^* \gamma$ modes

$$B^+ \rightarrow K^{*+} \gamma, K^{*+} \rightarrow K_s^0 \pi^+$$



Mark Convery, SLAC

$$B^0 \rightarrow K^{*0} \gamma, K^{*0} \rightarrow \pi^0 K_s^0$$

La Thuile, March 8, 2001

$B^0 \rightarrow h^+ h^{'-}$ Candidates

- Selection of candidates
 - Sphericity angle, $\cos(\theta_s) < 0.9$, almost identical to $\cos(\theta_t)$, defined earlier
 - Fox–Wolfram moment R2 < 0.95
 - Sphericity > 0.01
 - Track quality cuts
 - DIRC quality cuts
 - 5.2 < m_{ES} < 5.3 GeV
 - -0.15 < Δ E < 0.15 GeV
- 26404 selected ($\epsilon_{\pi\pi,MC} \approx 0.45$) candidates used in Maximum Likelihood Fit

$B^0 \rightarrow h^+ h^{'-}$ Likelihood Fit

- Fit Parameters
 - $N_{\pi\pi}$ number of $B^0 \rightarrow \pi^+ \pi^-$
 - $N_{\kappa\pi}$ number of $B^0 \rightarrow K^+ \pi^-$
 - $A_{\kappa\pi}$ asymm. in $B^0 \rightarrow K^+ \pi^-$
 - N_{KK} number of $B^0 \rightarrow K^+ K^-$
 - $N_{\rm b\pi\pi}$ background $\pi\pi$
 - $N_{\rm bK\pi}$ background K π
 - $A_{bK\pi}$ asymm in bkg. $K\pi$
 - N_{bKK} background KK

- Fit Variables
 - m_{ES}
 - ΔΕ
 - Fisher output for cone-based shape
 - θ_{c,+} DIRC Cherenkov Angle
 for positive track
 - $\theta_{c,-}$ DIRC Cherenkov Angle for negative track

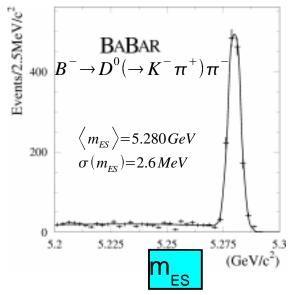
Event PDF $P_{event}^{hypo} = P_{m_{ES}}^{hypo} P_{\Delta E}^{hypo} P_{F}^{hypo} P_{\vartheta_{C,+}}^{hypo} P_{\vartheta_{C,-}}^{hypo}$ hypo = $\pi\pi$,K π ,KK,b $\pi\pi$,bK π ,bKK

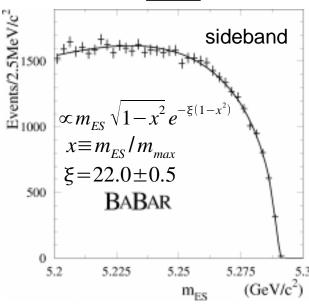
Calibration of PDF's

Crucially important that PDF's for signal and background are properly modelled

 Signal σ dominated by beam energy spread. Taken from

$$B^- \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^-$$


- Background shape from ∆E sideband
- Checked with offpeak and cont. MC


Signal σ dominated by tracking

$$-\sigma_{D^0\pi^-,MC} = 15 \, MeV, \sigma_{D^0\pi^-,Data} = 19 \, MeV$$

$$-\sigma_{h^+h^{'-},MC} = 21 \,MeV \Rightarrow \sigma_{h^+h^{'-},PDF} = 26 \pm 5 \,MeV$$

Background from ∆E sideband

La Thuile, March 8, 2001

Calibration of PDF's -II

• F

- Signal from MC $B^0 \rightarrow \pi^+ \pi^-, K^+ \pi^-, K^+ K^-$
- Checked with $B^- \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^-$
- Background from m_{ES} sideband
- Checked with off-resonance and continuum MC
- $\theta_{c,1}$, $\theta_{c,2}$
 - π ,K shapes taken from $D^{*+} \rightarrow \pi_s^+ D^0 (D^0 \rightarrow K^- \pi^+)$
 - Includes $\cos\theta_{\rm dip}$ -dependent $<\theta_{\rm c}>$ and $\sigma_{\rm HC}$ and small "satellite" peaks

$$B^0 \rightarrow \pi^+ \pi^-, K^+ \pi^-, K^+ K^-$$
 Fit Result

- Systematics calculated by varying PDF shape parameters
 - Within statistical errors
 - To cover disagreement between Data and MC

 Traditional "cut and count" analysis also done. Gives consistent results, lower sensitivity.

BaBar Preliminary				
Decay Mode	$N_{signal} \pm \sigma_{stat} \pm \sigma_{syst}$	BR BaBar ($\times 10^{-6}$)	BR CLEO ($\times 10^{-6}$)	
$\pi^+\pi^-$	$41\pm10\pm7$	$4.1 \pm 1.0 \pm 0.7$	$4.3 \pm^{+1.6}_{-1.4} \pm 0.5$	
$K^+\pi^-$	$169 \pm 17^{+12}_{-17}$	$16.7 \pm 1.6^{+1.2}_{-1.7}$	$17.2^{+2.5}_{-2.4} \pm 1.2$	
K^+K^-	$8.2^{+7.8}_{-6.4} \pm 3.3$	< 2.5 (90% CL)	< 1.9 (90 % CL)	

Summer 2000 Results

Based on 7.7 fb⁻¹. Preliminary results, to be updated soon!

Decay Mode	BR BaBar $(\times 10^{-6})$	Method
$K^{*0}\pi^+ \ ho^0 K^+ \ K^+\pi^-\pi^+ \ ho^0\pi^+ \ \pi^+\pi^-\pi^+ \ ho^\pm\pi^\mp$	<28 (90% CL) <29 (90% CL) <54 (90% CL) <39 (90% CL) <22 (90% CL) $49\pm13^{+6}_{-5}$	cut & count
$egin{array}{c} \omega h^+ \ \omega K^0 \ \eta' K^+ \ \eta' K^0 \end{array}$	< 24 (90% CL) < 14 (90% CL) 62 ± 18 ± 8 < 112 (90% CL)	cut & count

Conclusions

• Based on a first year sample of 22.4 \times 10 6 BB pairs, BaBar has preliminary measurements of

$$- BR(B^0 \to K^{*0} \gamma) = (4.39 \pm 0.41_{\text{stat}} \pm 0.27_{\text{syst}}) \times 10^{-5}$$

$$- A_{CP}(B^0 \to K^{*0} \gamma) = -0.035 \pm 0.094_{\text{stat}} \pm 0.022_{\text{syst}}$$

$$= BR(B^0 \to K^+ \pi^-) = (16.7 \pm 1.6_{\text{stat}-1.7 \text{syst}}^{+1.2}) \times 10^{-6}$$

$$= BR(B^0 \to \pi^+ \pi^-) = (4.1 \pm 1.0_{\text{stat}} \pm 0.7_{\text{syst}}) \times 10^{-6}$$

Lots more modes and precision to come from BaBar charmless decays!