B⁰B⁰ Oscillations and sin2 at BABAR

David Nathan Brown

Lawrence Berkeley National Laboratory

Representing the BABAR Collaboration

Outline

- B⁰ B⁰ mixing and CP in the Standard Model
- BABAR and PEPII
- Event sample
- Analysis procedure
 - Signal channel selection
 - Flavor tagging
 - Time measurement resolution modeling
 - Fitting
- Results
 - m_B0
 - sin2

Systematic error estimation

2

Conclusions

BERKELEY L

Quark mixing in the Standard Model

Quark electroweak doublets are composed of mass eigenstate mixtures given by a mixing matrix.

$$\begin{bmatrix} d \\ s \\ b \end{bmatrix}' = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}_{CKM} \times \begin{bmatrix} d \\ s \\ b \end{bmatrix}_{Mass}$$

Unitarity of the mixing matrix can be shown graphically as a triangle.

3

Non-zero triangle area (, , or !=0) implies CP violation

A 'triangle' which doesn't close implies non-SM physics

B⁰ B⁰ Mixing

 $B^0 \overline{B^0}$ mixing can proceed through EW box diagrams

$$\mathbf{f}_{\mathrm{Mixing},\pm}(\Delta t) = \frac{\mathrm{e}^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}} \times \left[1 \pm \cos \Delta m_{B^0} \Delta t\right]$$

m_{B^0} is sensitive to $|V_{td}V_{tb}^*|$

4

7 March, 2001

....

BERKELEY LAB

CP Violation via Mixing Interference

Interference between mixed and unmixed B_0 decays to CP eigenstates induces a time and flavor-dependent rate

$$f_{\rm CP,\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \times [1 \pm \sin 2\beta \sin \Delta m_{B^0} \Delta t]$$

Flavor-specific rate vs time depends on sin2

5

7 March, 2001

CP and Mixing at the (4S)

(4S) $B^0 \overline{B^0}$ proceeds via coherent P-wave. Tagging the flavor of one B at decay determines the flavor of the other at that instant.

6

BERKELEYL

PEPII at SLAC

.....

The BaBar Data Sample

23 Million $B^0 \overline{B}{}^0$ pairs recorded

A Fully-Reconstructed (4S) $B^0\overline{B}^0$ Event

Event Reconstruction

12

BERKELEY LAP

$J/\quad K_L \, Reconstruction$

- \odot K_L are found in EMC and IFR
 - \odot Cluster with no associated track
 - ⊙ Inconsistent with ⁰ or
- B⁰ mass used to reconstruct candidates (no cut)

Hadronic (non-CP) B⁰ Reconstruction

14

7 March, 2001

BERKELEYLA

Flavor Tagging

Tags are assigned hierarchically

- \odot Leptons from semi-leptonic decay (b c W⁻, W⁻ e _e)
- ⊙ Kaons From Cabibo-favored hadronic cascade (b c s)
- ⊙ Neural net (1 and 2)

O Low-momentum leptons, soft pions, additional kaons

© Efficiency and mistag rates are determined from B⁰ decays

- \odot Parameters in sin2 , $\ m_{B^0}$ Likelihood fits
- \odot Cross-checked with B⁰ D^{*} ℓ

15

Tag Category	$\varepsilon(\%)$	w(%)	Q(%)	
Lepton	10.9 ± 0.4	11.6 ± 2.0	6.4 ± 0.7	- officiency
Kaon	36.5 ± 0.7	17.1 ± 1.3	15.8 ± 1.3	
NT1	7.7 ± 0.4	21.2 ± 2.9	2.6 ± 0.5	w = mistag rate
NT2	13.7 ± 0.5	31.7 ± 2.6	1.8 ± 0.5	$Q = (1-2w)^2$
Total	68.9 ± 1.0		26.7 ± 1.6	

BERKELEY I

t Resolution

◎ t z/ c

In the second second

- \odot Tag B^o z resolution ~180 µm
- \odot Signal B⁰ z resolution ~70 μm
- Resolution modeled with 3
 Gaussians
 - ⊙ Core, Tail, and Outliers
 - scaled to vertex error estimate (core and tail)
 - Shifts from 0 allowed (charm vertex flight)
- Fit Parameters in sin2 , m_{B⁰}
 Likelihood fits

Parameter	Value	
S _{Core}	1.1 ± 0.1	
S_{Tail}	3.8 ± 0.9	
f_{Tail} (%)	11 ± 5	
$f_{\rm Outlier}$ (%)	0.8 ± 0.5	
$\delta_{\text{Core,Lepton}}$ (ps)	0.08 ± 0.10	
$\delta_{\text{Core,Kaon}}$ (ps)	0.21 ± 0.05	
$\delta_{\text{Core,NT1}}$ (ps)	0.01 ± 0.10	
$\delta_{\text{Core,NT2}}$ (ps)	-0.18 ± 0.09	
δ_{Tail} (ps)	-0.46 ± 0.38	

B⁰ B⁰ Mixing Result (Preliminary)

Sit for m_{B^0} + 33 parameters for tagging effects and z resolution for signals and backgrounds
 A second second

Comparison with Other Results

CP Rates by Mode and Tag

sin2 Extraction

$sin(2) = 0.34 \pm 0.20 \pm 0.05$

20

BERKELEYLA

Systematic Errors and Cross-Checks

Systematic	$J\!/\!\psiK^0_S,\!\psi(2S)K^0_S$	$J\!/\psiK^0_L$	Full sample
Δt determination	0.04	0.04	0.04
$J/\psi K_S^0, \psi(2S)K_S^0$ back.	0.02		0.02
$J/\psi K_L^0$ back.		0.09	0.01
$J/\psi K_L^0$ Sig. fraction		0.10	0.01
$ au_{B^0}$	0.01	0.01	< 0.01
Δm_{B^0}	0.01	< 0.01	0.01
Other	0.01	0.01	0.01
Total	0.05	0.14	0.05

- No significant differences are seen dividing sample by tagging mode, signal mode, decay mode, …
- No significant direct CP violation

21

◎ No CP asymmetry in fits to B[±] samples

Comparison with Other Results

CKM Constraints

BERKELEY LA

Conclusions

- BaBar has measured m_{B⁰} and sin2 in ~21 fb⁻¹ of recorded (4S) decays
 - Most precise single measurement of sin2
 - Consistent with other measurements and world average
 - \odot World average sin2 is now 3 away from 0
- BaBar is running again since February 1
 - ⊙ 0.6 fb⁻¹ recorded so far
 - Peak luminosity ~1X10³³/cm²s

24

⊙ We expect an additional ~30 fb⁻¹ of data by August

7 March, 2001

Mixing and sin2 measurements are done with the same strategy: do a global fit to all the events that can carry information:

- Mixing : tagged flavour eigenstates
- sin2 : tagged flavour and CP eigenstates

We float in the fit as many parameters as possible

parameter	#params	Sensitive evts	
sin2	1	CP Only in CP fit	
M _d	1	flavour Only in mixin	ng
w & w	8	flavour	
t resolution	9	flavour and CP	
Background	6	sidebands	Biggest
Background w	8	sidebands	with sin2
Background t	3	sidebands	7.6%

25

7 March, 2001

BERKELEYLAR

	J/ K _L composition			
	Fraction(%)	EMC	IFR	
	signal	40.3	50.7	
MC	$\mathbf{J}/\mathbf{K}^{*0}(\mathbf{K}_{\mathrm{L}}^{0})$	9.1	9.9	
	$J/K^{*+}(K_{L})$	14.4	16.9	
lusive	$J/K_{s}(^{0})$	6.4	2.1	
Inc	Other- J/	29.8	20.4	
sidebands	Non- J/	6.3	4.4	

J/

