Electroweak Physics Measurements at CDF

Giorgio Chiarelli I stituto Nazionale di Fisica Nucleare Sezione di Pisa

This presentation

Electroweak processes look like the bread and butter of high Pt physics at hadron colliders ~Wrong!

They are the key to understand detectors and physics necessary to go beyond

∽In the discovery region

Besides...

With large statistics you can perform precision measurements and..

⇒Look for new physics (LEP legacy)

The "clean" theoretical background allows to use them as "standard" against which testing unknow pieces of the puzzle...

Tevatron Tevatron is a W & Z factory Year 2002 2003 2004 2005 2006 Month1 4 7 10 1 4 7 10 4 7 10 1 4 7 10 1 4 7 10 4 7 10 4 7 10 4 7 10 1 4 7 10 1 4 7 10 4 7 Chicago ----2000 p A1750 1500 1250 TUNN 1.96 TeV 1.7 fb^{-1} on tape Booster CDF Total Lotal DØ 500 Tevatron Delivered 250 To tape 7 0 1000 1500 2000 2500 3000 3500 4000 4500 5000 p source **Main Injector** Store Number & Recycler Events/Week/Exp. Mode (before trigger & cuts) W→ev ~50,000 ~5,000 Z→ee

Giorgio Chiarelli, INFN Pisa

The accelerator

Fundamental being able to collect data

Currently excellent performance

- ⇒8 different machines running together (included e-cooling)
- The aim is an integrated luminosity plan
 - ∽called "Design"

⇒brings ~8 fb⁻¹/exp. by FY 09

We also have a "fallback plan"

```
∽called "baseline"
```

⇒brings to ~4.5 fb⁻¹/experiment by FY 09

The beams division is working well and the machine is performing!

CDF -performance

CDF collects data with good efficiency

At high instantaneous luminosity we need to act if we want to retain our physics capabilities

nze, 16 novembre 2006

The environment

Giorgio Chiarelli, INFN Pisa

Production cross-section (barns)

10⁻²

10⁻⁴

10⁻⁶

10⁻⁸

10^{-10)*}

10^{-12|}

10⁻¹⁴⁾

10^{-16]}

-fb

100

EWK precision tests

Vcs

Indirect determination exploiting SM and worldaverage of the other CKM ME involved:

$$\Gamma_{W} = 3\Gamma_{W}^{0} \left(1 + K_{QCD} \left(\boldsymbol{a}_{S}^{3} \right) \sum_{|\text{no top}|} \left| V_{qq'} \right|^{2} \right)$$

$$|V_{cs}|_{CDF} = 0.976 \pm 0.030$$

 $\frown \alpha_s$ =0.12, Γ^0_W =226.4 MeV/c²

Better than LEP (direct) alone (0.97±0.11), worst than LEP+Run I (0.996±0.013)

Indirect Width Uncertainties

Category	Electron	Muon	Correlation
Stat error	0.1753	0.2705	0.0
Acceptance stat error	0.0294	0.0480	0.0
Boson p _T	0.0019	0.0044	1.0
PDF <	0.0704	0.0851	1.0
P _T scale/resolution	0.0012	0.0170	1.0
E _T scale/resolution	0.0185	0.0000	0.0
Material	0.0319	0.0000	0.0
Recoil calibration	0.0267	0.0384	1.0
Uncorrelated efficiency error	0.1203	0.1015	0.0
Track reconstruction efficiency	0.0170	0.0445	1.0
QCD background	0.0435	0.0397	1.0
Uncorrelated EWK background	0.0089	0.0112	0.0
Correlated EWK background	0.0042	0.0290	1.0
Cosmic ray background	0.0000	0.0702	0.0
y [*] correction factor	0.0109	0.0112	1.0

Raw uncertainties on R

Precision R Measurement

Use maximum likelihood fit to extract W and Z contributions to common candidate sample

Giorgio Chiarelli, INFN Pisa

R W/Z: new Method

CDE	D R/R (%)		
PRELIMINARY	electron (72 pb ⁻¹)	electron (300 pb ⁻¹) PRELIMINARY	
Statistical	1.7	0.94	
PDF	0.65	0.31	Reduced by x2
Material	0.28	-	
Recoil	0.28	0.40	
Efficiency	1.10	-	Eliminated.
Background	0.37	2.5	Increased: needs bett
$Missing-E_{T}$	-	0.5	
Total Systematic	1.50	2.6	> 60000 ───────────────────────────────
Stat. + Syst.	2.20	2.76	
Preliminary syste comparison with e	matic study & arlier analysis.	Recoil distributi & QCD bac	ion for signal
$R = 10.55 \pm 0.09(\text{stat}) \pm 0.26(\text{syst})$			
	CDF e PREL	IMINARY, 374 pb ⁻¹	°0 10 20

etter understanding

— W MC

— Z MC

40

30

— QCD (from data) CDF Run II Preliminary

50

Recoil Energy (GeV)

60

Giorgio Chiarelli, INFN Pisa

Constr. PDF-W Asymmetry

Asymmetric u,d quark momentum distributions within proton lead to asymmetric W⁺,W⁻ rapidity distributions

 V-A decay of W boson reduces the observable asymmetry in the lepton rapidity distributions

 $d\sigma/d\theta \propto (1 + \cos\theta)^2$

Giorgio Chiarelli, INFN Pisa

Old and new measurement

CDF measurement breaks data into separate E_T ranges ∽ Electron Channel only

Giorgio Chiarelli, INFN Pisa

Measuring with 1 fb⁻¹

account production & decay Resolve dependence on y_w iteratively

do/dy Z- Selection

Z selection with two central electrons : central \Rightarrow Kinematic selection : $E_{\tau} \ge 25 \text{ GeV}$, $|\eta| < 1$. ⇒Two electrons with tight and loose I D ⇒Opposite charge electrons required Z selection with a central and forward central electron : Zcp \Rightarrow Kinematic selection : $E_{\tau} \ge 20 \text{ GeV}$ $|\eta| < 1.1$ for central, $1.2 < |\eta| < 2.8$ for plug ⇒tight central electron and one plug electron Z selection with two forward electrons : Zpp \Rightarrow Kinematic selection : $E_{T} \ge 25 \text{ GeV}$, $1.2 < |\eta| < 2.8$ ⇒Two plug electrons ⇒Same side events required \Rightarrow One leg must have a silicon track

Giorgio Chiarelli, INFN Pisa

Firenze, 16 novembre 2006

plug

W in forward region

Traditional measurements in CDF involved central leptons (*e*, **m**)

- Thanks to improved tracking and new calorimeter
 |η|> 1 region is now used for e (to a lesser extent for m)
- Challenge due to use of silicon seeded tracks and to background

$$\mathbf{s} = 2796 \pm 13(stat)_{-90}^{+95}(syst) \pm 162(lum)pb$$

Parton Distribution Functions

Parton momentum fraction within the proton depends on quark type and is different for valence and sea quarks

Giorgio Chiarelli, INFN Pisa

PDF Parameterization

 $xf_{q}(x,Q_{0}) = A_{0} x^{A1} (1-x)^{A2} e^{(A3)x} (1 + A_{4}x)^{A5}$ (CTEQ)

Separate functions for u,d,g,ū,đ 30 total parameters (10 fixed)

PDF functions are based on fits to experimental data made by two independent groups (CTEQ & MRST) Parameters are determined for $Q_0 = 1.3$ GeV and the Q dependence is modeled by QCD evolution equations The A_i parameters are correlated and eigenvectors are determined to facilitate uncertainty calculations

Forward/central can be used

To constrain PDFs:

- Define partial cross section
 - ⇒Do not correct for A (PDF, NLO-NNLO effects removed from definition)

⇒**s**_f=718±3±21 pb ⇒**s**_c=664±3±11 pb

Control Con

∽ R_{tn}(NNLO)= 0.9266±0.0019

PDF eigenvalue

W Mass Uncertainties

CDF preliminary syst. uncertainties for 200 pb⁻¹

Currently, estimate a combined 76 MeV uncertainty Finalizing analysis and completing exhaustive cross checks

∽ My prediction:
⇒Below 60 MeV

Systematic [MeV]	Electrons	Muons	Common
Lepton Energy Scale and Resolution	70	30	25
Recoil Scale and Resolution	50	50	50
Backgrounds	20	20	
Production and Decay Model	30	30	25
Statistics	45	50	
Total	105	85	60

I mproved understanding of the W events will put statistics back into being the most significant contribution to uncertainty

$W \rightarrow \tau v, Z \rightarrow \tau \tau$ channel

Giorgio Chiarelli, INFN Pisa

Firenze. 16 novembre 2006

Ζ→ττ

Z→ee

W+jets

80 100 120 140 160 180 200

QCD Di-jets

gamma+jets

Diboson production

Production of dibosons in the final state characterize SM processes

☞In some cases a crucial test of the structure

C Deviations can signal new physics

∽Absence can set boundaries

Production cross section is tiny

∽O(10)-O(1) pb

⇒In some cases smaller than the ttbar xsec Nevertheless they constitute a background towards the Higgs discovery

∽W**g**Z**g**WW,WZ,ZZ

⇒Wγ,Zγ measured and published (200 pb⁻¹): →Wγ: s(ppbar -> W + ?) = 18.1 ± 3.1 pb →Zγ: s(ppbar -> Z + ?) = 4.6 ± 0.5 ± 0.2 p

Dibosons

Probe non-Abelian nature of $SU(2)_{L} \otimes U(1)_{Y}$ via gauge boson self-interactions (triple, quartic)

Tevatron (ppbar) is sensitive to different combinations of tri-linear gauge couplings than LEP (e⁺e⁻) and explores higher s

Λ

Events/7GeV

20

0

1006-10-11 10:09:54

40

60

80

Photon Et(GeV)

100

120

140

Firenze, 16

Z+Jet γ+Jet

Photon type	Central Photon			
Zee type	CC	CP	CC + CP	
$N_{\gamma+Jet}^{bkg}$	1.8 ± 1.2	12.1 ± 5.4	13.9 ± 6.5	
N_{Z+Jet}^{bkg}	11.5 ± 4.3	25.6 ± 9.9	37.1 ± 14.3	
N_{SM}^{exp}	142.6 ± 7.7	181.2 ± 10.0	323.8 ± 17.3	
$N_{SM}^{exp} + N_{QCD}^{bkg}$	155.9 ± 8.9	218.9 ± 15.1	374.8 ± 23.4	
N^{obs}	183	207	390	
$\sigma^{obs}(pb)$				
CC	5.6 ± 0.4 (stat.) ± 0.3 (syst.) ± 0.3 (lum.)			
CP	4.4 ± 0.4 (stat.) ± 0.4 (syst.) ± 0.3 (lum.)			
CC + CP	$4.9\pm0.3~({\sf stat.})\pm0.3~({\sf syst.})\pm0.3~({\sf lum.})$			
1				

W+γ, 1 fb⁻¹

WW Production

New CDF cross section measurement (825 pb⁻¹) Require two opposite sign leptons and large missing E_T Expect 38±5 background and 52±4 signal events Observe 95 events

 $\sigma(pp \rightarrow WW) = 13.6 \pm 2.3(stat)$ $\pm 1.6(syst) \pm 1.2(lum) \text{ pb}$

NLO cross section: 12.4 ± 0.8 pb

Campbell, Ellis, Phys. Rev. D60 (1999) 113006

Firenze, 16 novembre 2006

WZ Production

p

I nvolves a single tri-linear gauge coupling not accessible at LEP Measure WWZ coupling independent of WWγ

CDF searched using three lepton plus Missing E_T signature (825 pb⁻¹). Observed events with an expected background of 0.9 \pm 0.2 events and signal of 3.7 \pm 0.3 events

W, Z γ, Z, W W, Z \bar{p} W, ZW, Z \bar{p}

s(WZ) < 6.34 pb (95% C.L.)

Poor acceptance for leptons

Giorgio Chiarelli, INFN Pisa

WZ selection

Giorgio Chiarelli, INFN Pisa

Firenze, 16

Results: WZ->IIIv

- Signal Region (MET>25 GeV) 1-bin counting:
 - C Prob(background only) < 1.5 10⁻⁷ (5.1 σ)

Two bins in MET:

- ∽ Nobs(25 < MET < 45 GeV) = 9
- Nobs(45 < MET < ? GeV) = 7

⇔ Prob(background only) < 2 10⁻⁹ (5.9 σ)

First observation of WZ production!

 ✓ We also note that our 2-bin result is ordinary for SM WZ+bkg.
 ⇒ We find 49% of 10k pseudo-exp's have a joint 2-bin probability smaller than our data

Source	Expectation \pm Stat \pm Syst \pm Lumi
Z+jets	$1.22 \pm 0.27 \pm 0.28 \pm$ -
ZZ	$0.89 \pm 0.01 \pm 0.09 \pm 0.05$
$Z\gamma$	$0.48 \pm 0.06 \pm 0.15 \pm 0.03$
$t\bar{t}$	$0.12 \pm 0.01 \pm 0.01 \pm 0.01$
WZ	$9.79 \pm 0.03 \pm 0.31 \pm 0.59$
Total Background	$2.70 \pm 0.28 \pm 0.33 \pm 0.09$
Total Expected	$12.50 \pm 0.28 \pm 0.46 \pm 0.68$
Observed	16

Giorgio Chiarelli, INFN Pisa

Firenze, 16 novembre 2006

Check: background

We performed a number of checks to verify our understanding of the back. Contr:

Low ET region in trilepton sample, Z mass window

> ⇔Contribution from Z+γ ISR, Z+jet

Comparison Comparis

⇒Zγ FSR

Source	Low MET	Z Veto
ZZ	2.2	0.4
Zg	157.5	201.6
Z+jets	63.8	23.3
WZ	2.8	0.3
Total exp.	226.3±35.7	225.9±43.2
Observed	215	241

WZ cand: eee event (PEM)

Run=154799 Event=1795709

 $\begin{array}{ll} m_{12}{=}87.91 \ {\rm GeV} & |\not\!\!\!E_T|{=}60.5 \ {\rm GeV} \\ m_{13}{=}104.37 \ {\rm GeV} & \Delta \phi(\not\!\!\!E_T, {\rm lepton, jet}){=}1.5 \\ m_{23}{=}59.62 \ {\rm GeV} \end{array}$

Type	$\mathbf{p}_{\mathbf{t}}$	η	ϕ
Central e	45.4	0.2	0.2
Central e	41.3	-0.6	-2.1
Forward e	24.6	-2.1	-1.1

Giorgio Chiarelli, INFN Pisa

Alcune misure in corso -II

σ_{t-ch} [pb]

Gi

Recent results

CDF recently blessed two analyses on the search for single top (s+t combined), both based on 955 pb-1

One uses a multivariate method.

⇒Negative result (limit <2.7 pb@95% CL)

The other sees "evidence"

(2.3 s) (consistent with background only at 1%)

⇒Upfront: given the statistics they are consistent

Conclusion

CDF is exploiting the good performance of the Tevatron to explore the features of the EWK processes

○Precision tests of the SM

Probe to better understand QCD processes

☞Testing new tools for O(1pb) physics
⇒Higgs?

∽Last but not least...

⇒Better define what is "Beyond the Standard Model"..