

W Production cross section with plug electrons (1.1<|η|<2.8)

Giorgio Chiarelli, Ivan Fedorko, Sandra Leone, Antonio Sidoti INFN Pisa CDF note 6535

Giorgio Chiarelli, INFN Pisa

Why ?

CDF measured W production cross section using e and μ in central region Sell known quantity ⇒Excellent to test silicon standalone tracking capability \rightarrow Measure efficiencies on data, check MC Scheasurement interesting per se (unexplored rapidity region) and ⇒Path to other interesting physics processes (associated production, decays involving Ws etc)

How

We measure the W production cross section looking for Selectron in the forward region ⇒Em clusters in *Plug* ⇒MET \Rightarrow Clusters are matched to a 3D track independently reconstructed by the tracking system (i.e. no use of calorimetric info) \rightarrow Due to the η region this means using mostly silicon (SVXII, ISL) with or without COT \rightarrow This is very close to what is done in the central region

Data samples

We use the plug electron dataset collected in the first preshutdown period (March 2002-January 2003), equivalent to about 64 pb⁻¹ Sequire MET_PEM trigger fired ⇒Require working plug and silicon ("Good silicon Run" Seconstructed using 4.11.1 In order to measure efficiencies (trigger, ID etc) $\forall Z \rightarrow ee$ (Central plug) ♥ JETXX (XX=20,50,70)

Ingredients

The recipe for cross section is always the same:

 $(N_{cand}-N_{back})/(\epsilon \times L)$

 $\Rightarrow \varepsilon = \varepsilon_{sele} \times \varepsilon_{trigger}$

Measure efficiencies and background mostly using data

Requirements

 \Leftrightarrow calorimetric

- ⇒EM clusters in plug region (1.1<|η|<2.8) with large E_T
 ⇒Cluster to be consistent with being an electron and isolated (ID)
 ⇒Large MET
 ☆ tracking
 - ⇒Require a match with a track extrapolated to the PES

⇒Require track to have 0.5<E/p<2

Selection

Initial dataset Trigger MET(GeV) ♦ MET_PEM fired Primary vertex ♥ |PVZ|<60 cm</p> Electron ♦ E_T>20 GeV ♦ 1.1< |η|<2.8</p> ♥ Electron ID Transverse Cluster Energy vs Missing Et ra \Rightarrow Had/Fm < 0.05 ⇒Relative Isolation<0.1 MET> 20 GeV Require a track(P_T >1 GeV/c) to match: $\langle \langle \Delta X \rangle \langle 3 cm \rangle | \Delta Y \rangle \langle 3 cm \rangle$ $\Rightarrow \Delta$ indicates (PES-extrapolated track) ♦ 0.5< E/p < 2</p>

Giorgio Chiarelli, INFN Pisa

CDF Collaboration Meeting, April 30 2004

60

80

ET(GeV)

1.00

Giorgio Chiarelli, INFN Pisa

Large Background contamination. Use tracks to clean

Giorgio Chiarelli, INFN Pisa

After track selection

After track matching and E/p cut sample is clean:

Top: All, Middle: East, Bottom: West

Giorgio Chiarelli, INFN Pisa

Background

QCD background is calculated using the MET vs ISO method.

 \clubsuit Corrections for $W \rightarrow \tau v$, $W \rightarrow ev, Z \rightarrow ee$ contributing to the different regions are applied.

 $W \rightarrow \tau v$ and $Z \rightarrow ee$ background are estimated using MC and normalized to candidates

Final result for the three contributions is (statistical uncertainty only):

> ⇒N(QCD)=495 ± 62 ⇒N(Z)=87±13 ⇒N(W→τν)=324±23

Giorgio Chiarelli, INFN Pisa

Giorgio Chiarelli, INFN Pisa

Giorgio Chiarelli, INFN Pisa

Acceptances and efficiencies

 $\varepsilon = \varepsilon_{kin} \times \varepsilon_{id} \times \varepsilon_{pvz} \times \varepsilon_{track} \times \varepsilon_{E/p} \times \varepsilon_{trg}$ Geometrical and kinematical acceptance \Rightarrow ET>20 GeV, 1.1< $|\eta|$ <2.8, MET>20 In red the ones \rightarrow Computed using MC measured using data **Electron ID efficiency** \Rightarrow Had/EM<0.05, Isorel<0.1 \rightarrow Measured using Z \rightarrow ee (CP) Track Matching $\Rightarrow \Delta X \Delta Y < 3 \text{ cm}$ \rightarrow Measured using plug leg of Z \rightarrow ee (CP) events E/p requirement ⇒0.5<E/p<2 \rightarrow Measured using plug leg of Z \rightarrow ee (CP) events PVZ efficiency ⇒ |Z|<60 cm \rightarrow Measured Z \rightarrow ee (CP), after removal of central leg Trigger efficiency \Rightarrow MET_PEM fired

Giorgio Chiarelli, The sured using backup to gooration Meeting, April 30 2004

Measured using EWK MC sample wewk09e processed using V4.9.1/4.11.1 ♦ A = (0.3112±0.07) Systematics: Et Scale ♥ Et Smearing W Pt tuning ♥ U Recoil 🗞 Extra Material ♥ PDF

Systematics summary

Source	∆ Acc/Acc (%)
Et scale	0.35
Et smer	0.16
Extra material	0.90
Pt tuning	0.06
U recoil	0.35
PDF	+1.71-1.37
Total	+2.00-1.72

Some systematics (material, PDF)

Extra material, use standard EWK MC dataset

♦ Change central (+-1.5% X₀ of Cu)

⇒Negligible

♦ Change by +/-1/6 X₀ Fe in plug (0.84, 0.90)%, take the biggest 1.5 M events generated for each PDF error eigenvalue, formula agreed within the Ewk..

Giorgio Chiarelli, INFN Pisa

$Z \rightarrow ee$, CP data sample

Central leg (tight) Plug leg: ♦ |PVZ|<60</p> ♦ ET>20, 1.1<|η|<2.8</p> ♦ Had/Em<0.125</p> ♦ 80<Mee<100</p>

Used to measure $\Rightarrow \varepsilon$ ID efficiency $\Rightarrow 0.961 \pm 0.0037 \pm 0.022$ \Rightarrow track matching efficiency $\Rightarrow \Delta X, \Delta Y$ $\Rightarrow E/p$

Giorgio Chiarelli, INFN Pisa

Track matching

3D track found by tracking algorithm is extrapolated to PES location: Correction for PES misalignment is applied, however (small) residual misalignment... checked that no effect on candidates

Giorgio Chiarelli, INFN Pisa

Scale Factor (SF)

We might also define ε_{tracking} as:
Setracking⁼ ε_{tracking}(W_{MC})× SF where SF:
SF = ε_{tracking}(Z_{data})×ε_{tracking}(Z_{MC})
Sys obtained by assuming SF flat or taken as a function of η,φ and E_T. Biggest effect due to E_T, taken as syst.

Giorgio Chiarelli, INFN Pisa

SF and Tracking

SF as a function of η

Giorgio Chiarelli, INFN Pisa

E/p requirement

We apply a cut to E/p : 0.5<E/p<2

As MC does not model the distribution well, we measure the efficiency on $Z \rightarrow ee$ sample

ε= 0.639±0.015(stat)±0.01(syst)

Giorgio Chiarelli, INFN Pisa

PVZ efficiency

Primary vertex finding efficiency is measured using $Z \rightarrow ee$ (CP) events.

- Sevents are selected and then the central leg is stripped away
 - ⇒Sample is reprocessed (now it looks W-plug-like...)
 - ⇒Efficiency is defined as:
 - (# events w/o central leg with |PVZ|<60 cm)

(# events w central leg and central trk $|Z_0| < 60$) ϵ = 0.9207±0.0051±0.0035

Trigger efficiencies

Trigger MET_PEM: ♥ L1_EM8_MET15 ⇒L2_PEM20_MET15 →L3_PEM20_MET15 Using backup triggers we find an overall: $\epsilon_{trig} = 0.958 \pm 0.012$ We checked with **JET20, JET50, JET70** (agreement)

 \Rightarrow Side effect: we measured the trigger ϵ also in the other data taking periods..

Cross Section

N.candidate events	10461	
N.background QCD events	$495 \pm 62 \text{ (stat)}$	$\pm 247 \text{ (sys)}$
N.background Z events	87 ± 13 (stat)	
N.background $W \rightarrow \tau \nu$ events	324 ± 23 (stat)	
$Lumin.(pb^{-1})$	64	± 4.3 (sys)
ϵ	0.052 ± 0.002 (stat)	$\pm 0.002 \text{ (sys)}$

	Value		Syst.error
ϵ_{Kin}	0.3112 ± 0.0007		0.0058
$\epsilon_{Pvz,Kin}$			0.0035
ϵ_{PVZ}	0.92 ± 0.005		
ϵ_{ID}	0.961 ± 0.004		0.022
ϵ_{trig}	0.958 ± 0.011		
$\epsilon_{E/p}$	0.64 ± 0.015		0.001
ε		0.170 ± 0.005	0.005
$\epsilon_{tracking}$		0.322 ± 0.009	0.006
ϵ_{Lum}		0.951 ± 0.001	0.005
Overall ϵ		0.052 ± 0.002	0.002

σ =2.874±0.034(stat)±0.167(syst)±0.172(lum) nb

Giorgio Chiarelli, INFN Pisa

Conclusion

Added one point to a 20 years old history...more to come

Work in progress:

5.3.1: increase tracking efficiency, increase in candidates...

Giorgio Chiarelli, INFN Pisa

5.3.1...Very preliminary

Candidates... (plug e)

Tracking efficiency in $Z \rightarrow ee (CP)$: 0.48±0.01

Giorgio Chiarelli, INFN Pisa

η dependence of tracking eff.

Giorgio Chiarelli, INFN Pisa

φ and η dependence

Giorgio Chiarelli, INFN Pisa

Giorgio Chiarelli, INFN Pisa

Background

QCD background is calculated using the MET vs ISO method:

Corrections for $W \rightarrow \tau v$, $W \rightarrow ev, Z \rightarrow ee$ to the different regions are applied. \Rightarrow Final background : $\Rightarrow N(QCD)=495 \pm 62$ $\Rightarrow N(Z)=87\pm13$

⇒N(W→τν)=324±23

Giorgio Chiarelli, INFN Pisa

Z->ee CP sample

Giorgio Chiarelli, INFN Pisa

$Z \rightarrow ee (CP) sample$

A sample of Zee is selected

♦ Central leg (tight)
 ♦ Plug leg
 ⇒ |PVZ|<60
 ⇒ ET>20, 1.1<|h|<2.8
 ⇒ Had/Em<0.125
 ⇒ 80<Mee<100

Giorgio Chiarelli, INFN Pisa

Giorgio Chiarelli, INFN Pisa

CII

5

Giorgio Chiarelli, INFN Pisa

Giorgio Chiarelli, INFN Pisa

E/p Study- Z->eeCP

Invariant mass Mee divided in E/P regions: 0<E/p<0.5 0.5<E/p<2

Giorgio Chiarelli, INFN Pisa

	E/p selection				
Background contamination is calculated with Fake Rate method (G. Veramendi and A. Robson A _{FB} and Z→ee CP Xsec)					
Eff E/P =					
After Trk Match	All 932	East 510	Bkg East 1.2 +/-1	West 423	Bkg West 1.0 +/-1
After 0.5 <e p<2.0<="" td=""><td>596</td><td>325</td><td>~0 +/-1</td><td>271</td><td>~0 +/-1</td></e>	596	325	~0 +/-1	271	~0 +/-1

Et scale and smearing

 $\Delta Acceptance = (Default - (\pm 3\sigma))$ $\delta = (\Delta Acceptance / Acceptance) (\%)$

Scaling 2.5%

Smearing 2.7%

Description	-3	Α	A/A (%)	+3	ΔA	A/A (%)
Et Scaling	1.90%	0.0011	0.35	3.10%	0.0010	0.32
Et Smearing	1.60%	0.0005	0.16	3.80%	0.0005	0.16
Total scaling	0.35			MAX	(δδ.	_)
Total smearing	0.16				· +3031	Υ.

Giorgio Chiarelli, INFN Pisa

Pt tuning in Pythia

As in W \rightarrow enu central:

 $d\sigma/dp_T$ of ee pairs in 66 $< M_{ee} < 116$ tuned by four

Pythia parameters

Comparison with CDF Run I data

 Δ Acceptance = (Default - ($\pm 3\sigma$))

 $\delta = (\Delta Acceptance / Acceptance) (\%)$

Parameter	MAX($\delta_{+3\sigma}, \delta_{-3\sigma}$)
Par 62	.01
Par 64	.04
Par 91	.04
Par 93	.00
Total	0.057

Giorgio Chiarelli, INFN Pisa

Extra Material

 $\Delta Acceptance = (Default - (\pm 3\sigma))$

 $\delta = (\Delta Acceptance / Acceptance) (\%)$

MC datase	t Description	∆Acceptance	(%)
Wewk4e	Extra -1.5% Xo Cu in centra	1 0.00003	-
Wewk3e	Extra +1.5% Xo Cu in centra	al 0.00002	-
Total	MAX($\delta_{+\lambda}, \delta_{-\lambda}$)		_

Negligible contribution from Central extra material

MC dataset	Description	A Acceptance	δ(%)
Wewk6e	Extra -1/6 Xo Fe in plug	0.0028	0.90
Wewkae	Extra +1/6 Xo Fe in plug	0.0026	0.84
Total	MAX($\delta_{+3\sigma}, \delta_{-3\sigma}$)		0.90
			Systematics for extra material

Giorgio Chiarelli, INFN Pisa

Recoil energy Perp & Par

Giorgio Chiarelli, INFN Pisa

Recoil energy

$$\overrightarrow{U} = -(\overleftarrow{E}_{T} + \overrightarrow{E}_{T}) \longrightarrow U_{\perp} & U_{II} \longrightarrow$$

Parallel and perpendicular difined with respect of lepton direction

• Data and MC for different values of parameters were compared using χ^2 distributions

• Value of parameter for χ^2_{min} used to recalculate Met and acceptance • Appropriate values of parameters of 3σ shift in χ^2 used for systematics study

43

$$U'_{||} = K_{||}(U_{||} + C_{||})$$
$$U'_{\perp} = K_{\perp}(U_{\perp} + C_{\gamma})$$
$$U' = K^* \text{sqrt}(U^2_{\perp} + U^2_{||})$$

Giorgio Chiarelli, INFN Pisa

Recoil energy table

$$U'_{II} = K_{II} (U_{II} + C_{II})$$
$$U'_{\perp} = K_{\perp} (U_{\perp} + C_{\perp})$$

	K _{II}	K_{\perp}	K	C _{II}	C_{\perp}
n.d.f.	200	200	200	200	200
Fit value	1.097	1.104	1.069	-0.465	0.006
∆valu <u>ę</u>	0.034	0.037	0.027	0.153	0.151
$\Delta A_{+3\sigma}$ (%) ($\Delta A/A$)	-	I	0.18	0.29	0.004
$\Delta A_{-3\sigma}$ (%) ($\Delta A/A$)	-	Ι	0.17	0.3	0.005
Total $\Delta A/A$ (%)	0.3	5	-		

 $Total = sqrt(0.18^2 + 0.3^2 + 0.005^2)$

Giorgio Chiarelli, INFN Pisa

Scale Factor: W vs Z

Giorgio Chiarelli, INFN Pisa

Track Matching- Wenu

Plug East Misalignement of ~0.7cm Marginal impact since PES doesn't seed any track. Just matching with 3cm window

Giorgio Chiarelli, INFN Pisa

Track Matching

Tracks found by the different tracking algorithms

Giorgio Chiarelli, INFN Pisa

E/P Study- W->ev

Tracks from W->enu sample

Region in O<E/P< 0.5 coming from very High Pt tracks

Giorgio Chiarelli, INFN Pisa

E/p: signal and back..

Signal sample

QCD enriched:

Giorgio Chiarelli, INFN Pisa

Q: plot phi vs Z distributions for each layer to confirm that the eta dependence of the scale factor is determined by the differences between the real and the simulated acceptances

- •Look at DAQ status for all Si Ladders in our sample
- •Compare to realistic MC (Run 151435)
- •Study each individual layer
- •Produce a Summary plot

Silicon Coverage(2) Data/MC

DATA/MC after Data and MC independently normalized.

Giorgio Chiarelli, INFN Pisa

CDF Collaboration Meeting, April 30 2004 Tracks

Track Quality(COT Hits)

Giorgio Chiarelli, INFN Pisa

PVZ Distributions

After all cuts

Giorgio Chiarelli, INFN Pisa

PV Vertex and TrkzO

On W \rightarrow ve candidates (after E/P cut)

On Z \rightarrow ee CP Candidates with stripped central track

Difference between TrkzO of plug track – Pvz from ZvertexColl Difference between TrkzO of central electron and PV from Zvertex Coll in Z→ee CP sample with stripped central track

Trigger Efficiencies

Preshut	Tot	East	West
L1_MET15	99.6+/-0.2	100+/-0.2	99.1+/-0.4
L3_MET15	99.9+/-0.1	100+/-0.2	99.8+/-0.3
L1_&_L3_MET15	99.5+/-0.3	100+/-0.2	99.6+/-0.2
L1_MET15 x L3_MI	E 199 55+/-0.3	100+/-0.2	99.6+/-0.2
L2_PEM20	96.3+/-1.1	95.1+/-1.4	97.8+/-1.5
Overall	95.8+/-1.2	95.1+/-1.8	96.8+/-1.5

Systematics obtained after shifting Et Eele by +/-1-sigma

```
(+/-3.1,3.6%) +/-1.0%
```

Systematics obtained relaxing the E/P cut:

+/-1.8%

To be conservative we take as systematics the largest uncertainty

We also checked on different sample (JET20) our results and it agrees well within the (large) statistical error.

Eff Trigger (%) =95.8+/-1.2 (stat) +/- 1.8 (syst)
$$63$$

Giorgio Chiarelli, INFN Pisa

Trigger Efficiencies

Preshut	Tot	East	West
L1_MET15	99.6+/-0.2	100+/-0.2	99.1+/-0.4
L3_MET15	99.9+/-0.1	100+/-0.2	99.8+/-0.3
L1_&_L3_MET15	99.5+/-0.3	100+/-0.2	99.6+/-0.2
L1_MET15 x L3_MI	=19955+/-0.3	100+/-0.2	99.6+/-0.2
L2_PEM20	96.3+/-1.1	95.1+/-1.4	97.8+/-1.5
Overall	95.8+/-1.2	95.1+/-1.8	96.8+/-1.5

Systematics obtained after shifting Et Eele by +/-1-sigma

```
(+/-3.1,3.6%) +/-1.0%
```

Systematics obtained relaxing the E/P cut:

+/-1.8%

To be conservative we take as systematics the largest uncertainty

We also checked on different sample (JET20) our results and it agrees well within the (large) statistical error.

Giorgio Chiarelli, INFN Pisa

Trigger E	ffici	encies
------------------	-------	--------

Preshut	Tot	East	West
L1_MET15	99.6+/-0.2	100+/-0.2	99.1+/-0.4
L3_MET15	99.9+/-0.1	100+/-0.2	99.8+/-0.3
L1_&_L3_MET15	99.5+/-0.3	100+/-0.2	99.6+/-0.2
L1_MET15 x L3_ME	19955+/-0.3	100+/-0.2	99.6+/-0.2
L2_PEM20	96.3+/-1.1	95.1+/-1.4	97.8+/-1.5
Overall	95.8+/-1.2	95.1+/-1.8	96.8+/-1.5

Systematics obtained after shifting Et elec by $\pm 1 \sigma$ ($\pm 3.1, \pm 3.6\%$) +/-1.0% Systematics obtained relaxing the E/P cut: $\pm 1.8\%$ To be conservative we take as systematics the largest variation

We also checked on different sample (JET20) our results and it agrees well within the (large) statistical error.

Eff Trigger (%) =95.8+/-1.2 (stat) +/- 1.8 (syst)

MET_PEM Trigger: Method

Three periods: Preshutdown Data (Mar2002-Jan2003) Post 1 (Feb 2003-May2003) \rightarrow PhyTab 1_04_* Post 2 (20 May 2003-Sept 2003) \rightarrow Phy_Tab 1_05_*

Turn-On Curves fitted by 2 different curves:

■1/(1+exp(-beta(x-alpha)))

■1-p0 exp(-p1 x)

Will consider x as Raw (offline) variables (MET and Et)

Trigger Plots: L1 MET15

L1 MET15 vs Run

Giorgio Chiarelli, INFN Pisa

L1 MET15

Trigger Eff for the three periods.

Giorgio Chiarelli, INFN Pisa

L3 MET15 vs Run

L1_MET15_&_L3 MET15

Giorgio Chiarelli, INFN Pisa

L2_PEM20 vs Run

Giorgio Chiarelli, INFN Pisa

Giorgio Chiarelli, INFN Pisa

Giorgio Chiarelli, INFN Pisa

JET20 and L3_PEM20 Performed the same exercise on independent sample: JET20(only preshutdown) Can evaluate overall MET_PEM efficiency MET PEM Eff(MET PEM)= JET20 and offline selection Total WEST EAST Eff(MET_PEM)_{IET20} 84 2+/-9 4 78 + / -1690 + / 13Evaluated L3_PEM20 from Z->ee (CP) All events fired PLUG_ELECTRON_20 trigger bit \rightarrow Eff(L3_PEM20)=100%

80

Giorgio Chiarelli, INFN Pisa

Trigger Efficiencies

Preshut	Tot	East	West	
L1_MET15	99.6+/-0.2	100+/-0.2	99.1+/-0.4	
L3_MET15	99.9+/-0.1	100+/-0.2	99.8+/-0.3	
L1_&_L3_MET15	99.5+/-0.3	100+/-0.2	99.6+/-0.2	
L1_MET15xL3_MET	15 99.5+/-0.3	100+/-0.2	99.6+/-0.2	DraChut
L2_PEM20	96.3+/-1.1	95.1+/-1.4	97.8+/-1.5	PreSnut
Overall	95.8+/-1.2	95.1+/-1.8	96.8+/-1.5	
L1_MET15	99.7+/-0.2	99.8+/-0.3	99.7+/-0.4	
L3_MET15	100+/-0.1	100+/-0.2	100+/-0.3	
L1_&_L3_MET15	99.7+/-0.2	99.8+/-0.3	99.7+/-0.4	
L1_MET15xL3_MET	15 99.7+/-0.2	99.8+/-0.3	99.7+/-0.4	
L2_PEM20	97.4+/-1.4	97.4+/-2.1	97.4+/-2.1	Post1
Overall	97.2+/-1.4	97.2+/-2.2	97.1+/-2.2	1 0311
L1_MET15	99.2+/-0.3	98.6+/-0.6	99.8+/-0.3	
L3_MET15	99.9+/-0.1	99.8+/-0.3	99.8+/-0.3	
L1_&_L3_MET15	99.1+/-0.3	98.4+/-0.6	99.8+/-0.3	
L1_MET15xL3_MET	15 99.1+/-0.3	98.4+/-0.6	99.8+/-0.3	
L2_PEM20	96.1+/-1.4	93.5+/-2.6	98.2+/-1.5	Post?
Overall	95.2+/-1.5	92.1+/-2.7	98.0+/-1.6	1 0312

Giorgio Chiarelli, INFN Pisa

81