

CDF Looks Forward

Giorgio Chiarelli M.Ciljak, I.Fedorko, J.E.Garcia, S.Leone, A.Sidoti, A.Staveris

Giorgio Chiarelli, INFN Pisa

EWK process

 $W \rightarrow ev x$ -section at large η (>1.1) & Using tracking separately from calorimeter ⇒Excellent to test tracking capability \rightarrow Measure efficiencies on data, check MC Scheasurement interesting per se (unexplored rapidity region) and ⇒Path to other interesting physics processes (associated production, decays involving Ws etc) CDF note 7023: Preliminary result on 72 pb⁻¹ (blessed for spring conf. In 2004) CDF 7594: Selection criteria and eff. Studies for 223 pb⁻¹

$W \rightarrow ev x$ -sect

- σ(W) is measured using electron at large η:
 ⇒Em clusters in *Plug*⇒MET
 - ⇒Clusters are matched to a 3D track *independently* reconstructed by the tracking system (i.e. no use of calorimetric info)
 - →Due to the η region this means using mostly silicon (SVXII, ISL) with or without COT
 - \rightarrow This is very close to what is done in the central region

Data samples

Plug electron dataset collected in the first preshutdown period (March 2002-February 2004), equivalent to ~223 pb^{-1(*)} Sequire MET_PEM trigger fired ⇒Working plug and silicon ("Good silicon Run") Reconstructed using 5.3 ⇒Good Run List V7 To measure efficiencies (trigger, ID etc) $\forall Z \rightarrow ee$ (Central-Plug) 𝔅JET20 All Gen5...

(*)factor 1.019 included

Ingredients

The recipe for cross section is always the same:

 $(N_{cand}-N_{back})/(\epsilon \times L)$

 $\Rightarrow \epsilon = \epsilon_{sele} \times \epsilon_{trigger}$

Measure efficiencies and background mostly using data & Z→ee CP sample

Requirements

- \Rightarrow calorimetric
 - ⇒EM clusters in plug region (1.1<|η|<2.8) with large E_T
 - ⇒Cluster to be consistent with being an electron *and* isolated (ID)
 - ⇒Large MET
- 🖏 tracking
 - ⇒Require a match with a track extrapolated to the PES
 - ⇒Require track to have E/p<2

Selection

Giorgio Chiarelli, INFN Pisa

CDF Collaboration Meeting, October 28, 2005

Large Background contamination. Use tracks to clean

Giorgio Chiarelli, INFN Pisa

After track selection

After track matching and E/p cut sample is clean: M_T

Giorgio Chiarelli, INFN Pisa

Selection Summary

Requirement	# events
Em plug, ET>20	4.5 x 10 ⁶
Ele ID	1.2 × 10 ⁶
MET>20	402443
PES match	98756
E/p and Z0trk<60cm	58962

Cand. track parameters

0 20 40 60 80 100 120 140 160 180 200 p (GeV)

Giorgio Chiarelli, INFN Pisa

CDF Collaboration Meeting, October 28, 2005

Background

Non W backg. is calculated using the MET vs ISO method.

 \clubsuit Corrections for $W \rightarrow \tau v$, $W \rightarrow ev, Z \rightarrow ee$ contributing to the different regions are applied.

 $W \rightarrow \tau \nu$ and $Z \rightarrow ee$ backgrounds are estimated using MC and normalized to candidates ♦ Result is (stat. uncert. only): ⇒N(QCD)=3758±125 ⇒N(Z)=527±5 ⇒N(W→τν)=1946±43 Check of back.calculation using "anti-electron" method (CDF note 7760)

 \Rightarrow result consistent

Giorgio Chiarelli, INFN Pisa

CDF Collaboration Meeting, October 28, 2005

Acceptances and efficiencies

 $\varepsilon = \varepsilon_{kin} \times \varepsilon_{id} \times \varepsilon_{pvz} \times \varepsilon_{track} \times \varepsilon_{E/p} \times \varepsilon_{trg}$ In red the ones Geometrical and kinematical acceptance measured using data \Rightarrow ET>20 GeV, 1.1< $|\eta|$ <2.8, MET>20 \rightarrow Computed using MC Electron ID efficiency \Rightarrow Had/EM<0.05, Isorel<0.1 \rightarrow Measured using Z \rightarrow ee (CP) Track Matching ⇒∆X,∆Y<3 cm \rightarrow Measured using plug leg of Z \rightarrow ee (CP) events and MC E/p requirement ⇒E/p<2 \rightarrow Measured using plug leg of Z \rightarrow ee (CP) events Trigger efficiency ⇒MET_PEM fired \rightarrow Measured using backup trigger

Giorgio Chiarelli, INFN Pisa

$Z \rightarrow ee$, CP data sample

Central leg (tight)

Plug leg:

- $𝔅 E_{T}$ >20, 1.1<|η|<2.8
- ♦ Had/Em<0.125</p>
- ♦ 80<Mee<100</p>

Used to determine E scale and smear

Used to measure efficiencies, check MC etc.

Giorgio Chiarelli, INFN Pisa

$Z \rightarrow ee, \epsilon$ calculation

For ε calculations background computed as for the Z \rightarrow ee CP sample (fake rate method using Jet20) and subtracted

Result:

- ♥ ε ID efficiency ⇒0.951±0.0022±0.026

₿ Е/р

⇒0.721±0.0067±0.0006 Systematic uncertainties computed assuming 40% backg.unc. (x-checked)

Giorgio Chiarelli, INFN Pisa

Trigger efficiency

Our trigger path is MET_PEM: ♥ L1= L1_EM8_MET15 ♦ L3=L3_PEM20_MET15 Efficiency is computed using backup trigger and (L2_PEM and L3_PEM20) using Zee(CP)* ↓ L1&L3_MET15= 0.9909±0.001 PEM20) ♦ L2_PEM20=0.9572±0.0036 ♦ L3_PEM20=0.9975±0.0009 0.8 ⇒ε=0.946+0.004 L2 PEM20 0.6

(*) collected using an independent trigger

14

Giorgio Chiarelli, INFN Pisa

Kinematical Acceptance

Measured using EWK M	С
sample wtop1i processed	
using V 5.3.3	
♦ A = (0.31568±0.0004)	
Systematics:	1
♦ Et Scale	1
♦ Et Smearing ✓	F
♥ W Pt tuning	Ī
♥ U Recoil ✓	F
🕏 Extra Material	- -
♥ PDF ✓	

Systematics summary

Source	∆ Acc/Acc (%)
Et scale3σ (1σ)	0.45 (0.14)
Et smear3σ (1σ)	0.09 (0.06)
Extra material	In progress
Pt tuning	In progress
U recoil3σ (1σ)	0.21 (0.08)
PDF	+1.54 -1.39
Total	+ххх-ууу

Largest systematics: PDF

10 M events generated for each PDF eigenvalue.90%CL value by CTEQ used to shift central value

Uncertainty estimate as by the W/Z PRD:

♦ (+1.54,-1.39)%

Direction of Acceptance Shifts	+ Uncertainty	 Uncertainty
$\Delta A^{\rm i}_{\uparrow} > 0 ~{\rm and}~ \Delta A^{\rm i}_{\downarrow} > 0$	$\sqrt{(\Delta {A^{\mathrm{i}}_{\uparrow}}^2 + \Delta {A^{\mathrm{i}}_{\downarrow}}^2)/2}$	0
$\Delta A^{\mathbf{i}}_{\uparrow} > 0 \text{ and } \Delta A^{\mathbf{i}}_{\downarrow} < 0$	ΔA^{i}_{\uparrow}	$\Delta A^{\mathbf{i}}_{\downarrow}$
$\Delta A^{\mathbf{i}}_{\uparrow} < 0 \text{ and } \Delta A^{\mathbf{i}}_{\downarrow} > 0$	$\Delta A^{i}_{\downarrow}$	$\Delta A^{\mathbf{i}}_{\uparrow}$
$\Delta A^{\rm i}_{\uparrow} < 0 ~{\rm and}~ \Delta A^{\rm i}_{\downarrow} < 0$	0	$\sqrt{(\Delta {A^{\mathrm{i}}_{\uparrow}}^2 + \Delta {A^{\mathrm{i}}_{\downarrow}}^2)/2}$

Or, taking the largest shift <u>if in the same direction</u>: & (+1.6,-1.65)%

16

Giorgio Chiarelli, INFN Pisa

Other systematics: material

CDF simulation is tuned by adding material:

Acceptance syst. is computed by varying amount (+-1/3 X0) and running full simulation and reconstruction Good agreement data-MC (check with Zee)

One can now look at kinematical plots after taking into account background contributions

All the details in CDF note 7594

Giorgio Chiarelli, INFN Pisa

CDF Collaboration Meeting, October 28, 2005

Kinematical distributions

Giorgio Chiarelli, INFN Pisa

CDF Collaboration Meeting, October 28, 2005

Summary and result

W \rightarrow ev cross section at 1.1 (η < 2.8 in 223 pb⁻¹

♦ Acc=0.315168
 ♦ ε_{triag}=0.946

Se_{ID}=0.951
 Se_{trk}=0.462
 Se_{E/p}=0.721

&σ=2643±12(stat)± (sys)±158(lum)

* a.k.a. Willis correction

Giorgio Chiarelli, INFN Pisa

Conclusion

CDF is looking (into the) forward region for physics. Work in progress and keep working towards use of this info in 1fb⁻¹...

Track match efficiency

We do not want to rely on MC for ϵ_{match}

 $Use Z \rightarrow ee \text{ sample, measure how many plug } e \text{ are matched } (\Delta X, \Delta Y < 3 \text{ cm}) \text{ by a track and define}$

 $\begin{aligned} & \underset{mtch}{\overset{(W)}{\overset{}_{data}} = \varepsilon_{mtch}(Z_{data}) \times \{\varepsilon_{mtch}(W_{MC})/\varepsilon_{mtch}(Z_{MC})\} \\ & \underset{mtch}{\overset{(W)}{\overset{}_{data}} = 0.462 \pm 0.005(stat) \pm 0.003(sys) \\ & \text{This definition is instrumental} \end{aligned}$

to our measurement

Giorgio Chiarelli, INFN Pisa

Tracking eff. SF

Results are:

Giorgio Chiarelli, INFN Pisa

Giorgio Chiarelli, INFN Pisa

PDF -II

Two prescriptions:

Giorgio Chiarelli, INFN Pisa

E Scale and smear

Energy scale is shifted in MC to match Zee data, also, smearing is applied

 $\Leftrightarrow E_{scale&smear} = Ex(1 + scale)x(1 + Gaus(0, smear))$

Giorgio Chiarelli, INFN Pisa

Recoil energy

$$\vec{U} = -(\vec{E}_T + \vec{E}_T) \longrightarrow \vec{U}_\perp \& U_{II} \longrightarrow$$

Parallel and perpendicular difined with respect of lepton direction

• Data and MC for different values of parameters were compared using χ^2 distributions

 Value of parameter for χ²_{min} used to recalculate Met and acceptance
 Appropriate values of parameters of 3σ shift in χ² used for systematics study

$$U'_{\parallel} = K_{\parallel} (U_{\parallel} + C_{\parallel})$$
$$U'_{\perp} = K_{\perp} (U_{\perp} + C_{\gamma})$$
$$U' = K^* \text{sqrt} (U^2_{\perp} + U^2_{\parallel})$$

Giorgio Chiarelli, INFN Pisa

Recoil systematics

Recoil syst.

Standard +-3 σ

	Parallel Scale	Parallel Shift	Perpen Scale	Perpen Shift
Value	0.953	-0.332	0.965	0.006
∆ A/A [%]	0.178	0.120	0.051	0.007
∆ A/A [%]	0.182	0.119	0.061	0.004

Contribution to acceptance systematics: = $\sqrt{(0.182^2+0.120^2+0.061^2+0.007^2)} = 0.226\%$

Using 1 σ shift: contribution to $\Delta A/A = 0.211\%$

Conclusion 2004

Added one point to a 20 years old history...more to come

Work in progress:

5.3.1: increase tracking efficiency, increase in candidates...

Giorgio Chiarelli, INFN Pisa

Track-PES matching

3D track found by tracking algorithm is extrapolated to PES location: Correction for PES misalignment is applied,

Tracking efficiency

A few interesting plots: Zee CP eta study

34

Giorgio Chiarelli, INFN Pisa

Track Matching

Tracks found by the different tracking algorithms

Giorgio Chiarelli, INFN Pisa

CDF Collaboration Meeting, October 28, 2005

SF and Tracking

Giorgio Chiarelli, INFN Pisa

CDF Collaboration Meeting, October 28, 2005

2

η Det

Track Matching- Wenu

Plug East Misalignement of ~0.7cm Marginal impact since PES doesn't seed any track. Just matching with 3cm window

Giorgio Chiarelli, INFN Pisa

L1 MET15

Trigger Eff for the three periods.

Giorgio Chiarelli, INFN Pisa

Cross Section

N.candidate events	10461	
N.background QCD events	$495 \pm 62 \text{ (stat)}$	$\pm 247 \text{ (sys)}$
N.background Z events	87 ± 13 (stat)	
N.background $W \rightarrow \tau \nu$ events	324 ± 23 (stat)	
$Lumin.(pb^{-1})$	64	$\pm 4.3 \text{ (sys)}$
e	0.052 ± 0.002 (stat)	$\pm 0.002 \text{ (sys)}$

Annil $200/$				
		Value		Syst.error
	ϵ_{Kin}	0.3112 ± 0.0007		0.0058
	$\epsilon_{Pvz,Kin}$			0.0035
	ϵ_{PVZ}	0.92 ± 0.005		
	ϵ_{ID}	0.961 ± 0.004		0.022
	ϵ_{trig}	0.958 ± 0.011		
	$\epsilon_{E/p}$	0.64 ± 0.015		0.001
	ε		0.170 ± 0.005	0.005
	$\epsilon_{tracking}$		0.322 ± 0.009	0.006
	ϵ_{Lum}		0.951 ± 0.001	0.005
	Overall ϵ		0.052 ± 0.002	0.002

σ =2.874±0.034(stat)±0.167(syst)±0.172(lum) nb

Giorgio Chiarelli, INFN Pisa