

Tevatron

Highest energy collider

- ▷ Proton on Pbars at 1.96 TeV
 ⇒ This record will hold!
- Originally designed to run at 10³⁰cm⁻²s⁻¹
- Upgraded in 1996-2001 and now running at 3.7x10³²cm⁻²s⁻¹ (record initial luminosity) with an interbunch of 396 ns (36x36 bunches)
- CDF upgraded in 1996-2001 to cope with increased luminosity but...

expected to run at 132 ns interbunch at 3x10³² cm⁻²s⁻¹

- ⇒Running with 396 ns instead..
 - \rightarrow More interactions/x-ing

Tevatron-Introduction

The Tevatron collider is an ensemble of accelerators.

- "Run II is not a construction project. Run II is a complex campaign of operations, maintenance, upgrades, R& D and studies." (D.Lehman)
- Critical Control Contro Control Control Control Control Control Control Control Contr
- Record: 3.72×10³²cm⁻²s⁻¹
 ⇒Keep improving
 ⇒In one week >70 pb⁻¹
 →record

FermilabTevatron Accelerator With Main Injector

Key point

The large integrated luminosity provides us with the chance to access new frontiers ∽Combination of High Energy Frontier ⇒with "intensity"

☞It is an opportunity and an experimental challenge
⇔CDF is up to this challenge

☞In this Conference many new results
⇒In my presentation I will focus on a few of them, leaving you the pleasure to listen to individual presentations

Physics program in a single plot

Strong effort to keep the system up and running. The system was NOT designed to run at such instantaneous luminosity but is working fine

Physics, today

The exceptional good running of the Tevatron opened new perspectives ~ First, and foremost we start taking seriously the chance to compete in the Higgs hunt ⇒Step up and reorganize efforts →New triggers implemented • Even hw upgrades \rightarrow Reorganization of physics groups (<u>HiggsDiscoveryGroup</u>) ⇒Most important: \rightarrow Get new people involved Many other analyses gained from increased [Ldt, I will show: ⇒Rare B decays (Bs, baryons, resonances) ⇒Precision studies of SM (QCD, EWK) processes ⇒Rare Ewk processes (dibosons, single top) ⇒ Top physics ⇒Searches for physics BSM

Results for DIS 09 mostly based on 2.7÷3.6 fb⁻¹

Understanding QCD

The large statistics allows extensive studies of exclusive processes Most recent results: Diffraction and low-Pt interactions Photo-production of charm states ☞ Inclusive photo-production pQCD ☞ Jet inclusive ∽ Structure Functions ℃Z,W+ (b) jets ⇒Key ingredient for frontier analyses

Talks by Mario Martinez, Christina Mesropian, Carolina Deluca Silberberg, Tara Shears, James Pinfold..

W, Z+jets

Associated production of W,Z+jets is key to many searches

- Test of QCD calculation and our understanding of theoretical uncertainties
- Important background in top physics, MOST important in s-top, V+Higgs production

Results on both inclusive (W,Z+jets) and exclusive (W,Z+b, W+c) channels

 Good agreement of NLO calculations for inclusive processes

W, Z+HF

Largely based on capability to identify b-jets

 Kinematical quantities in data are fitted to templates reproducing various components to extract signal fraction

⇒Good fit to data but...

⇒Disagreement with LO/NLO expectations

Results Z+b 2ft	-1 CDF Data	PYTHIA	ALPGEN	HERWIG	NLO	NLO +U.E+hadr.
$ \begin{aligned} \sigma(Z+b\mathrm{jet}) \\ \sigma(Z+b\mathrm{jet})/\sigma(Z) \\ \sigma(Z+b\mathrm{jet})/\sigma(Z+z) \end{aligned} $	$ \hline \begin{array}{c} 0.86 \pm 0.14 \pm 0.12 \text{ p} \\ 0.336 \pm 0.053 \pm 0.043 \\ 2.11 \pm 0.33 \pm 0.34\% \end{array} $	1% 0.35%	0.21% 1.45%	$0.21\% \\ 1.24\%$	0.51 pb 0.21% 1.88%	0.53 pb 0.23% 1.77%

Results for W+b (1.7 fb⁻¹): Data: σ · BR = 2.74 ±0.27(stat)±0.42(syst)pb LO: ALPGEN: σ·BR = 0.78 pb LO factor 3 low awaiting NLO comparison.

Poor agreement with predictions?

See Tara Shear's presentation

Тор

What can we learn?

Cross-Section × Br (pb)

m_u (GeV)

 m_{μ} (GeV)

Low mass Higgs

High-mass Dominant decay for M_H>135: WW* ~Look for final state with leptons only (low stat:6%) ~ Background due to dibosons, top, DY.. ∽Name of the game: acceptance+ ⇒Multivariate analysis (NN) $\mathcal{L} = 3.6 \text{ fb}^{-1}, M_H = 160 \text{ GeV}$ **NN Output CDF Run II Preliminary** $L = 3.6 \, fb^{-1}$ Signal Bkgd Data Channel OS 0 Jets, High S/B Wy $M_{\rm u} = 165 \ {\rm GeV/c^2}$ tt 10² WZ ZZ 637 ± 67 0 Jets 9.5 ± 1.4 654Signal DY

262

169

Signal extraction by creating a NN using several kinematical variables

 $5.98 \pm 0.78 \quad 278 \pm 35$

 4.53 ± 0.52 173 ± 23

1 Jet

2+ Jets

Much more in Anton Anastassov's presentation

Conclusion

CDF is running well and keeping up with the challenges provided by the excellent performances of the Tevatron accelerator complex

Thanks, Beams Division!

>5 fb⁻¹ on tape, and on its way to get more
∞ Those data open the possibility of studying very rare processes
⇒ The SM is being extensively tested
⇒ Higgs being hunted both directly and indirectly (top,W)
⇒ Understanding of QCD is improving and discrepancies are being checked throughly
⇒ We keep our eye open for the unexpected
⇒ Possibly in the B sector?
Stay Tuned !
Running through 2010 granted!

More data in 2011?