

April 16, 2007

Data taking...2.9x10³²..

Accelerator delivers..

Detectors use:

Two detectors

CDF underwent serious upgrades:

∽ New tracking system

⇒COT, new silicon tracker (6-7 layers DS+1 SS)

- > New forward calorimetry
- ∽ Tracking at trigger level
 ⇒ Tracks at L1
 ⇒ Displaced from PV@L2

DO: change of philosophy

- New tracking system
 - ⇒Based on a 2T solenoid
 - ⇒New 8 layers fiber tracker
 - ⇒Secondary vertices capability (SVX)
 ⇒Recently added (IIb) an extra layer of silicon sensors
- Improved muon coverage

Experiments: CDF

Experiments: DO

Tevatron Collisions I

Two main areas

🗢 B Physics
~ "High" Pt Physics
⇒SM (QCD)
⇒SM(EWK)
⇒SM(Top)
⇒Higgs, BSM
Trigger and analyses being
retuned to match the
challenge
∽ As luminosity increases
experiments are forced to
deal with new challenges

At stake the capability to go down the ladder and explore the fb region

Tevatron Collisions II

Giorgio Churent, DIS OT

Some CDF results for Win 07

QCD

- b-bbar dijet production cross section (260 pb⁻¹)
- Z+jets cross section measurement (1.1 fb⁻¹)
- ∽ Z→ b-bbar
- Dijet production cross section measurement (1.13 fb⁻¹)

B Physics

- ⇒ Lifetime measurements:
 ⇒ B+, BO, Bs and Λ_B (1fb⁻¹)
 ⇒ Rare decay searches:
 ⇒ B⁺→µ⁺µ⁻ K⁺, B⁰→µ⁺µ⁻ K^{*}, B_s→µ⁺µ⁻ φ (1fb⁻¹)
 ⇒ B→hh
 EWK
 ⇒ Observation of WZ production
 - ☞ Evidence for ZZ production
 - ∽ W mass, width

Тор

- Top mass in all-jets channel
- Production cross section (lepton+isolated track)
- Search for W' using the single top sample
- Top Production Mechanism
- (gg vs qq) ☞ Ton Cha
- 🗢 Top Charge

New Phenomena

- Search for New Particles Coupling to Z+jets (b'->Z+b) in 1.1 fb⁻¹
- SUSY trilepton combined limit - 0.7 to 1 fb⁻¹
- High-mass dielectron (Z' search) 1.3 fb⁻¹
- Higgs (fb⁻¹)
 - → H→ττ SUSY Higgs
 - ∽ H→WW ME-based analysis

Some results from DO

Winter 07 ☞ B Physics \Rightarrow B₂ \rightarrow µµ 2 fb⁻¹ C QCD ⇒ Triple jet differential cross section 1.1 fb⁻¹ ∽ EWK $\Rightarrow Z\gamma^* \rightarrow 4|1 \text{ fb}^{-1}$ 🗢 Тор $\Rightarrow \sigma(\text{ttbar})$ \rightarrow Dilepton \rightarrow L+jets \Rightarrow Top mass \Rightarrow Single top ∽ Searches \Rightarrow 2nd generation LQ \Rightarrow WH (many channels) ⇒ Updated SM Higgs limit

B Physics at an Hadron Collider

```
Thought to be almost impossible
☞ Exploits large cross section
    ⇒Need tight selection at trigger level
    ⇒Tracking capability at L1 and displaced track
       trigger at L2 at CDF
    Challenge at high luminosity
∽ Some very recent results:
    \Rightarrow Bs oscillations [Observed by CDF with 1fb<sup>-1</sup>]
    \RightarrowB\rightarrowhh [1fb<sup>-1</sup>]
         \rightarrow A_{CP} in B<sup>0</sup> \rightarrow K\pi, B<sup>0</sup> \rightarrow K\pi
         \rightarrowBF: B\rightarrowKK, B\rightarrow\piK, B\rightarrowAp
     \Rightarrow Search for rare B decays [D0 with 2 fb<sup>-1</sup>]
         \rightarrowBs\rightarrowµµ, B<sub>d</sub>\rightarrowµµ
    \Rightarrow Measurement of B<sub>c</sub> mass, new B Baryons states,
       excited states
```

Bs oscillations

D0 has a limit (900 pb⁻¹) $rac{}{\sim}$ 14.9< Δm_s <21 ps⁻¹ (90% CL)

CDF, with 1fb⁻¹ presents ∽ Observation of B_s Oscillations PRL 97, 242003 2006 ∽ Δm_s=17.77±0.10(stat)±0.07 (syst) ps⁻¹ : > 5σ observation ∽ Same data set used for previous (spring 06) limit ⇒ Improved selection

⇒ Improved selection
 ⇒ Improved analysis
 technique
 ⇒ A lot of efforts

Giorgio Chiarelli, DIS 07

Talk by Bob Kehoe

Rare decays as window to new physics

Some decays are predicted with BF 10⁻⁹ in the SM but have a potentially much larger rates in SUSY models

 $BR(SUSY) \propto BR(SM) \cdot \frac{m_b^4 \cdot (\tan \beta)^6}{m_{H^0}^4}$

Giorgio Chiarelli, DIS 07

D0 new result with 2 fb⁻¹ \bigcirc 3 events (2.3+-0.7 exp.) \bigcirc <9.3(7.5)10⁻⁸@95(90)% CL Not yet combined with CDF 0.8 fb-1 CL limits: \Rightarrow B_s<10(8) 10⁻⁸ 95(90) % \Rightarrow B_d<2.3(2) 10⁻⁸ 95(90) % \Rightarrow To be updated soon..

Run IIa data taking (1.3 pb⁻¹) 1 evts, 10.8±0.2 exp

Giorgio Chiarelli, DIS 07

See M. Corcoran

High P_T Physics

Need to define a clear set of physics objects

- 🗢 Jets
- High pt charged lepton
- 🗢 neutrinos

state

∽ B tagged jets
 ⇒ Displaced tracks
 ⇒ Soft lepton id

High mass objects (top, Higgs, New particles) decays into jets, leptons (charged and neutral) ~ Challenge: reconstruct initial parton

QCD Physics

Basics for any possible analysis:

- → Jets carry information about QCD, PDF, couplings
 ⇒ Et and angular distributions, fragmentation
 ⇒ Comparison to pQCD predictions
- Measuring jets means understand calorimetry and tracking
- Can be tools (or background) in many physics topics

Results:

- Inclusive jet cross section (inherited *discrepancy* with pQCD from Run I)
- Jet fragmentation
- Dijet mass x-section
- ☞ W+jets, Z+jets production
- Tunderlying events
- Diffraction

See talks by

O. Atramentov, J. Cammin, M. D'Onofrio, L. Pinera, C. Mesropian, S. Vallecorsa

Inclusive jet Physics

Jets are a key probe

- Fundamental in measuring top mass, search for new physics, test of the SM..
- Can show early appearance of new physics!

Large effort by both experiments in understanding production and properties

Less inclusive states

With larger statistics and improved detectors more and more results from prompt photons:

- D0 measures the triple
 γ-jet differential cross sections in 1 fb⁻¹
- CDF exploits smaller data sample collected with trigger devoted to detect secondary vertices and studies bbar

EWK Tests of the SM

Basics for top, searches

- Decay, associated production
- ~ Often background for rare processes
- Discrepancy from SM would signal new physics

Both CDF and DO measure

- ☞ Inclusive and differential production cross section (PDFs..)
- ^c Multiboson production (WW, ZZ, WZ, Wγ, Zγ: really at the boundaries of the Tevatron reach

```
⇒W7:
```

```
\rightarrow First observation by DO (3.3 \sigma)
```

```
\rightarrow CDF WZ at 6 \sigma
```

```
⇒WW production observed with 0.35 fb<sup>-1</sup>
    \rightarrow CDF, DO
```

```
\Rightarrow CDF evidence for ZZ at 3 \sigma (winter 07)
```

- \Rightarrow Z γ , W γ test of trilinear gauge coupling \Rightarrow Z γ measured by CDF (0.35 fb⁻¹) and DO (1 fb⁻¹)
- →Wy: D0 measures an angular distribution looking for the radiation amplitude zero.
 CDF measures W mass and width

See talks by S.Malik, Y.Maravin, A.Robson

Ζγ, Wγ

The gauge structure of the SM has a crucial test in the (destructive) interference in $W\gamma$

 $^{\mbox{\tiny CDF}}$ Both CDF and D0 measured Zv and Wv cross section in 1 fb^{-1} $^{\mbox{\tiny gr}}$

☞ CDF:

 $\Rightarrow \sigma(W+\gamma) = 19.1\pm 2.8 \text{ pb}$ $\Rightarrow \sigma(Z+\gamma) = 4.9\pm 0.5 \text{ pb}$

ightarrow D0(E_Tγ>7GeV, M_T(Iγ,MET)>90: $ightarrow \sigma(W+\gamma) = 3.2\pm0.5\pm0.2(lum)r$ $ightarrow \sigma(Z+\gamma) = 4.51\pm0.4\pm0.3(lum) pb$ The interference among the three tree-level diagrams below create a zero in the $\cos\vartheta^*$ distribution at $\cos\vartheta^* = \pm 1/3$

Q*∆n

Top Physics

Top has a strong relation with EWSB ⇒Yukawa coupling ~1 Test SM and QCD prediction ⇒Study of decay and production (Wtb vertex) ∽ Some studies performed in Run I ☞ With 1 fb⁻¹ in Run II, performed precision measurements of: ⇒ttbar production cross section \rightarrow Pre-requirement to select top-enriched samples \Rightarrow Top mass → keeps improving ~ Many ongoing analyses ⇒Fundamental: go from evidence (DO 2007) to discovery of EW top production (single top) \rightarrow Direct measurement of Vtb \rightarrow Critical test of the SM \Rightarrow Helicity meaurement, top charge etc.

Talks by C.Gerber, S.Jabeen, J. Wagner

Top cross section

Exp.& Th. Errors comparable: σ (all had): 8.3±1+2-1.5±0.5 pb

 σ_{tt} =6.8±0.6 pb (Kidonakis, Vogt) σ_{tt} =6.7+0.7-0.9 pb (Cacciari et al.)

Decay channel in dilepton more and more important, 1 fb⁻¹

D0: σ_{tt}= 6.8^{+1.2}-_{1.1}(stat)^{+0.9}-_{0.8}(syst)±0.4(lumi)pb

CDF σ_{tt} = 9.0±1.3(stat)± 0.5(sys)±0.5(lum)pb

 $\ensuremath{^{\text{CP}}}$ D0 shows two results in l+jets with 1 fb^-1:

σ_{tt} = 8.3 ^{+0.6}_{-0.5}(stat)^{+0.9}_{-1.0}(syst) ± 0.5 (lumi) pb

Giorgio Chiarelli, DIS 07

More on x-section and properties in Cecilia Gerber's talk

Talk by Jeannine Wagner

Giorgio Chiarelli, DIS 07

Talk by Shabnam Jabeen

Talk by Rocio Vilar

Giorgio Chiarelli, DIS 07

R. Strohemer

R. Strohemer

Conclusion-I

and to the Organizers