High P_T Physics at CDF

Giorgio Chiarelli I stituto Nazionale di Fisica Nucleare Sezione di Pisa

Giorgio Chiarelli, INFN Pisa

Outline of this talk

High P_T Physics at CDF is much broader than a single talk (or even two or three..)
☞I took one road (see next...)
Will discuss status of high P_T analysis
☞Run 2a (2fb⁻¹) expectations
☞current performances
☞(near) future improvements

Several topics which will be presented in other contributions are not discussed at all

CDF II

Image are service of the system
 Image are solution of the system of the system

new trigger system

⇒moved track trigger to L1
 ⇒built a Silicon Vertex Trigger (SVT) at L2 to trigger on tracks with large impact parameter

Giorgio Chiarelli, INFN Pisa

Run II Physics

- First results at ICHEP02, updated at HCP Luminosity situation
- ≈≈≈80 pb⁻¹ to tape (including part of commissioning)
 - ⇒Jets 6
 - ⇒High Et electrons

64 pb⁻¹ 55 pb⁻¹

- ⇒SVT with hadronic B trigger 50 pb⁻¹
- ⇒Top I+jets+b-tagging 44 pb⁻¹
 →requires whole detector to be operational

Which road?

Run 2a, with 2fb⁻¹ will provide:

Event yields per experiment

(*)Run 1: 100 pb⁻¹/experiment I=e,µ

Truth is in the Masses !

Giorgio Chiarelli, INFN Pisa

Masses..What is needed

W mass measurement needs

@ excellent control of systematics (energy scale, material budget), PDFs @ excellent understanding of E flow in the event Top mass measurement is a benchmark: $rac{}$ large η coverage for leptons and jets @rexcellent jet energy resolution and energy scale b-tagging in dense jet environment good understanding of QCD processes ⇒background (W+njets) ⇒I SR and FSR

W Mass uncertainties

Giorgio Chiarelli, INFN Pisa

Top mass

Run I (combined) ⇔174.3±3.2(st.)±4 (syst) GeV/c²

> syst dominated by statistics in control samples

most of the weight due to
I+jets sample

CDF I+jets Run 1 <mark>(2a)</mark> syst.		
Source	Gev/c ²	
Jet en.scale	4.4(2.2)	
ISR and FSR	1.8(1)	
background	1.3(0.5)	
b-tag bias	0.4	
PDF	0.3	
Total	4.9(2.5)	

In Run II: ☞ uncert. down to ⇒±3 GeV/c² (1 in 10fb⁻¹) most improvements from jet energy scale: ☞ using W's and Z→bb

Giorgio Chiarelli, INFN Pisa

Jet Physics

New calorimeter, work on energy scale in progress. Interesting events already on tape largest jet E_T recorded ! Dijet Mass = 1146 GeV (corr)

Giorgio Chiarelli, INFN Pisa

Jet Physics

Leading Jet Raw ET in CDF Jet Events CDF Run 2 Preliminary (12/14/2001 - 9/13/2002) 45.3 pb-1 Eventa/5 GeV Evtar5 GeV 0.1 < |eta| < 0.7 0.7 < |eta| < 1.4 new calorimeter 10 10 លើ for $|\eta| > 1$ 10 10 10 10 1ជី 10 10 Leading Jet Raw ET (GeV) Leading Jet Raw ET (GeV) Eventa/5 GeV Eventa/5 GeV 1.4 < |eta| < 2.1 2.1 < |eta| < 3.0 10 10 10 10 10 10 10 200 250 300 350 400 450 500 ā 50 100 150 200 250 300 350 400 450 500 a 50 100 150 Leading Jet Raw ET (GeV) Leading Jet Raw ET (GeV)

Corrected E-scale by the 2003 Winter Conferences

Giorgio Chiarelli, INFN Pisa

Hadronic Energy Scale

Use J/ψ muons to measure MIP in had. calorimeters ☞ (Run II)/(Run 1) = 0.96±0.05

 $M \gamma$

q

800

 γ -jet balancing to study jet response

 $\mathbf{f}_{\mathrm{b}} = (\mathbf{p}_{\mathrm{T}}^{\mathrm{jet}} - \mathbf{p}_{\mathrm{T}}^{\gamma})/\mathbf{p}_{\mathrm{T}}^{\gamma}$

Run I b (central):

 f_{b} = -0.1980 ± 0.0017

Run II (central): $f_{b} = -0.2379 \pm 0.0028$

Plug region corrections in progress

Giorgio Chiarelli, INFN Pisa

RTN Workshop, Roma, December 17 2002

 $\Delta f_{\rm b} = (4.0 \pm 0.4)\%$

Jet Phyics

Study jet behaviour at 1.96 TeV and compare to MC distribution:

Still using fixed cone of R=0.7

Giorgio Chiarelli, INFN Pisa

Jet Phyics

Agreement good but not as good at large |η| compare different Et bins (calorimeter only) vs Herwig for various η bins: 30<Et<135

Giorgio Chiarelli, INFN Pisa

Giorgio Chiarelli, INFN Pisa

EWK Physics: near future

New tools for physics:

 ${\ensuremath{\sc verturemath{\sc verturemath$

room for improvements (track trigger?)

Giorgio Chiarelli, INFN Pisa

EWK Physics: near(?) future

New tools for physics:

 $rightarrow W \rightarrow \tau v$, CDF developed a track-based trigger

Giorgio Chiarelli, INFN Pisa

Top couplings

In Run 2a

xsec uncert. <10%</p>
top FCNC

	1fb ⁻¹	10fb ⁻¹
B(t→Zq)	1.510 ⁻²	3.810-3
B(t→γq)	3.10 -3	410 ⁻⁴

 $\Rightarrow S.M. B(t \rightarrow Ws)(0.1\%)?$ $\Rightarrow Vtb$ $\Rightarrow to 3\% (indirect)$ $\Rightarrow to 15\% (direct)$ $\Rightarrow W helicity:$ $\Rightarrow SM prediction= 69\%$ for B(t $\rightarrow W_t b$) $\Rightarrow Run I = 70.6 \pm 1.6\%$ $\Rightarrow few \%$

Giorgio Chiarelli, INFN Pisa

Is Top back?

55 pb-1 for I+jets sample
 44 pb-1 if b-tagging required
 cross section by Winter Conferences

Giorgio Chiarelli, INFN Pisa

Dilepton ttbar candidate

Event (54713 Rate) 136285 Even(Type) DATA (Uppear) 633,2,3,5,7,8,8,16,11,12,13,16,17,1821,53,23,55,25 Press: 62,8,161,2,16,25 M

Et e⁺ 73 Et e⁻ 56 Et Jet 1 35 Et Jet 2 34 Missing Et 43 GeV M(e+e-) 118 GeV/c2

Giorgio Chiarelli, INFN Pisa

Beyond...

A number of tools still to be understood in terms of physics opportunities

 $rightarrow Z \rightarrow bbar$ sample using calorimeter/SVT

⇒jet energy scale correction

⇒more physics...

 $rac{}{}^{2}Z \rightarrow \tau \tau$

⇒new physics?

rightarrow larger η acceptance for WW, Wγ, WZ⇒keep looking for unexpected

With larger dataset..

accelerator challenge (in fb⁻¹)

FY	base	stretch
2002	0.08	0.08
2003	0.2	0.32
2004	0.4	0.6
2005	1.0	1.5
2006	1.5	2.5
2007	1.5	3.0
2008	1.8	3.0
Total	6.5	11.

Hunting for the Higgs is one part of a wider physics program:

- ☞ 5fb⁻¹:3σ signal for m_H=115 GeV(*);
 - search through most of the SUSY Higgs parameters space
- ☞ 10fb⁻¹:3**o** signal for m_H=115-125, 155-175 GeV(*)

Looking for unexpected phenomena in our data

(*)Results from the Fermilab Higgs Working Group. Being reexamined by CDF and D0

Giorgio Chiarelli, INFN Pisa

Conclusion

In the near future expect results on:

☞W/Z production, decays, M_W
☞top physics: top production and decay B.Ratios
Longer term, new tools will be very useful for
☞SUSY, Higgs, searches...
➡work needed !

Giorgio Chiarelli, INFN Pisa

RTN Workshop, Roma, December 17 2002