

Top Physics at CDF

Outline

- Motivations for studying top
- A brief history
- Top production and decay
- The Tevatron & CDF
- Detector issues
- Identification of final states
- Cross section measurement
- Single top-production
- Mass determination
- Study of top properties
- The lessen for LHC

Fermilab 95-759

Giorgio Chiarelli

Motivations for Studying Top

- Only known fermion with a mass at the natural electroweak scale.
- Similar mass to tungsten atomic # 74 35 times heavier than b quark.
 ⇒Why is Top so heavy?
 ⇒Is top involved in EWSB?
 ✓(Does (2 √ 2 GF)^{-1/2} ≈ M_{top} mean anything?)
 ⇒Special role in precision electroweak physics?
 ⇒Is top, or the third generation, special?
- New physics BSM may appear in production (e.g. topcolor) or in decay (e.g. Charged Higgs).

A Brief History of Top

- Top quark was expected in the Standard Model (SM) of electroweak interactions as a partner of b-quark in SU(2) doublet of weak isospin for the third family of quarks
- (weak isospin of b can be inferred from the forward-backward asymmetry in $e^+e^- \rightarrow b\bar{b}$)
- Anomaly free SM requires the sum of the family charges to be zero: given the b (and the tau lepton) there should be a 2/3 charge quark

1977-1994: increasing lower top mass limits

A Brief History of Top

Slide

- First top evidence in 1994 in CDF data, 19 pb⁻¹, 15 events on a background of 6,
 - \Rightarrow 2.8 σ excess, not enough to claim discovery
- Confirmed in 1995 by CDF and D0 in first ~70 pb⁻¹ of run 1 data (4.8 σ).
- Final Tevatron Run 1 top analyses based on ~110 pb⁻¹.
 - \Rightarrow Production σ in many channels.
 - \Rightarrow Mass: 178.0 \pm 4.3 GeV (CDF/DØ)
 - ⇒ Study of several aspects of event kinematics.
 - ⇒Limits on single top production, rare/non-SM decays.
- Overall consistency with the SM
- But only ~100 analyzable top events analyses statistics-limited.

A more cultural perspective of Top...

Top analyses as playground to learn how to optimize the cuts to reduce the bckgnd contamination, optimize the simulation, and realize that you'll have to use <u>real</u> <u>data</u> in order to study all the instrumental effects

About 5 orders of magnitude range in quark masses!

Slide 6

Production and Decay Basics

Top Quark Production at Tevatron

Single top identification is challenging
huge background

Top Decay : add. Motivation for Studying Top

- In the SM, assuming V-A coupling with a CKM matrix parameter $|V_{tb}| = 1$ for the $t \rightarrow bW$ decay vertex, one gets (LO): $\Gamma(t \rightarrow bW) \approx 175 \text{ MeV} (M_T/M_W)^2 (M_T,M_W \gg M_b)$
 - $\Rightarrow \Gamma(t \rightarrow bW) \approx 1.5 \text{ GeV} \Rightarrow \tau(top) \approx 4 \times 10^{-25} \text{ s}$
- Non-perturbative QCD hadronization takes place in a time of order: $\Lambda^{-1}_{\rm QCD} \sim (100 \text{ MeV})^{-1} \sim 10^{-23} \text{ s}$
 - ⇒ top decays before hadronizing, as free quark (no top hadrons, no toponium spectroscopy)
 - ⇒ the top quark provides the first opportunity to study the decay characteristics of a "bare" quark.
- $t \rightarrow Ws$, $t \rightarrow Wd$ allowed but suppressed by factors of ~ 10^{-3} and ~ 5×10^{-5} respectively

t-tbar Final States

Giorgio Chiarelli

More details on Jets

A jet is a complicated object:

measured by calorimeter towersdefined by a clustering algorithm

 Doing analysis with jets requires the energy of the measured jet to be converted to the energy of the parent parton or particle jet.

From measured jet energies to parton energies we need to correct for:

- Instrumental effects
- Physics effects
- Jet Algorithm effects

"Physics at a hadron collider...

...Is all about the trigger!" _

Examine each pp collision Select few interesting events (<70 Hz) Store for further offline analysis High p_T lepton High E_T jet, photon High Missing E_T (MET)

Keep 1 out of 25,000

Process	Cross-section	Event Rate
Inelastic pp	60 mb	6 MHz
$\overline{pp} \rightarrow bb$ (b $p_T > 6$ GeV, $ \eta < 1$)	10 µb	1 kHz
pp →WX→ℓvX	5 nb	0.4 Hz
p p→ZX→ℓℓX	0.5 nb	0.04 Hz
p p→tt→WWbb→{vbbX	2 pb	0.0002 Hz
$\overline{p}p \rightarrow WH \rightarrow \ell vbb$ (if $M_{H} = 120GeV$)	15 fb	0.0000015 Hz

Assume L =100x10³⁰ cm⁻²s⁻¹, *electron or muon*

Roma Tor Vergata, Novembre 2007

Comparison of Cross Sections

In 1 fb⁻¹ of data,
 ~ 1.4 x 10¹⁴ total collisions, one in every 10¹⁰ producing a ttbar event (c.f. one every 2.5 x 10⁶ producing a W event)

Note: LHC will be a top factory, producing ~ 2800 ttbar events per hour at low luminosity (10³³)

Method to identify a top signal

 Start from "counting events" passing cuts in all decay channels

⇒Optimization of signal region with respect to SM background processes (control region)

- Background dominates the production of ttbar pairs by several orders of magnitude
- How to separate signal from background:
 - \Rightarrow Top events have very distinctive signatures

 \checkmark Decay products (leptons, neut., jets) have large $p_{T}{}^{\prime}s$

✓Event topology: central and spherical

Heavy flavor content: always 2 b jets in the final state!

Why Measure the ttbar Cross Section?

- Basic engineering number, absolute measurement (→ very difficult!), prior step to any top property study.
- Requires detailed understanding of backgrounds and selection efficiencies.
- Test of SM
 - ⇒Departures from QCD prediction could indicate nonstandard production mechanisms, i.e. production through decays of SUSY states.

$$\sigma(t\,\bar{t}) = \frac{N_{obs} - N_{back}}{\varepsilon \times A \times \int Ldt}$$

Dilepton Channel

Relatively clean:

- Top and a small amount of SM bkgds
- Down side is small event samples

Signature:

- Two high p_T Isolated leptons opposite sign
- Veto Z, cosmic, conversion
- △Φ(E_T,I/j)>20°, or F_T>50 GeV
- Two jets with $E_T > 10 \text{ GeV}$

Expect: S/B ~ 9

Dominant backgrounds: Drell-Yan, W+jets ("fakes")

Dilepton Channel: ee, eµ, µµ (1.2 fb^{-1})

Jet Multiplicity

77 events on 25.6 \pm 5.5 background 16 ee, 26 $\mu\mu$, 35 e μ

Roma Tor Vergata, Novembre 2007

Giorgio Chiarelli

Dilepton Kinematics

Determine bkgd in Oj, 1j bins to give confidence in signal bin prediction

Dilepton: DY (ee, µµ) background

- Large cross section but no intrinsic E_{T}
- False E_t
 - Detector coverage isn't 4π
 - Reconstruction isn't perfect
- Tails of \mathbf{E}_{T} resolution critical
- Simulation doesn't accurately model this
- Extra cuts in "Z window"
- Estimate residual contamination:
 - Use loose Z data to normalize (subtract expected non-Z's)
 - Use MC to distribute inside outside Z window, across jet bins

Dilepton: Fake lepton backgrounds

- Determine lepton fake rate from jets in j50 sample
- Cross-check fake rates in other samples with jets
 - Apply fake rates to jets in W+jets data sample

DIL	Obsv	Pred
j20	51	49 +/- 6
j70	75	65 +/- 9
j100	69	114 +/- 31

 E_{T} of observed (predicted) fake tracks in green (black)

Slide 21

Dilepton: Z -> $\tau\tau$, diboson bkgds

- In both cases:
 - \Rightarrow Real missing energy
 - ⇒Jets from decays or initial/final state radiation
- Estimates derived using PYTHIA, ALPGEN+HERWIG MC, normalized to theoretical xsecs
- Correct for underestimation of extra jets in MC
 - $\Rightarrow \text{Determine jet bin reweighting} \\ \text{factors for } Z \rightarrow \tau\tau \text{ from} \\ Z \rightarrow ee, \mu\mu \text{ data} \\ \end{cases}$
 - \Rightarrow Reweight WW similarly

Dilepton: tt acceptance and efficiencies

DIL - sample composition

Acceptance:

- Determine from PYTHIA MC (m_t=175 GeV)
- Apply trigger efficiencies, lepton ID MC correction factors, luminosity weights for different detector categories

Lepton efficiencies:

- Determined in Z -> l l using second leg of Z's
- Get efficiency for data and MC, estimate difference and derive scale factor (90%, 79%, 83% for ee, $\mu\mu$, e μ respectively)

Final acceptance x eff = 0.732 %

Roma Tor Vergata, Novembre 2007

Slide 23

Dilepton: Signal acceptance systematics

Must take into account many effects potentially contributing to the acceptance uncertainty:

Systematic	DIL(%)
Lepton Identification	4
-variation of data/MC SF with isolation	
Jet Energy Scale, conversion, Njets in MC	3.2
(correlated data-mc systematics	
Initial-state radiation	1.7
- ISR: difference from no-ISR sample	
Final-state radiation	1.1
- FSR: parton-matching method, different PYTHIA tune	
Monte Carlo Generators	15
- compare acceptance of PYTHIA to HERWIG	
Parton Distribution Functions (PDF's)	0.8
- default CTEQ5L vs MRST PDF's, different $\alpha_{\!s}$ samples	
Roma Tor Vergata, Novembre 2007 G	iorgio Chiarelli

Dilepton: Systematic Uncertainty on Background Estimate

Systematic	DIL(%)
Lepton efficiency - same as signal	4
Jet Energy Scale - same procedure on bkgnd acc.	5-25
WW, WZ, ZZ estimate	6-10
 Compare WW+Op+(njet scaling) to WW+2p 	
Drell-Yan Estimate	42
- Absolute scale (data driven), Monte Carlo shape	
Fake Estimate	30-50
- J20, J50, J70, J100 x-check	

Dilepton: Cross section results

$$\sigma(t\,\bar{t}) = \frac{N_{obs} - N_{back}}{\varepsilon \times A \times \int Ldt}$$

1203 pb⁻¹

$$\sigma(t\bar{t}) = 6.16 \pm 1.05 \text{ (stat)} \pm 0.72 \text{ (syst)} + 0.37 \text{ (lumi) pb}$$

SM:
$$\sigma = 6.7 \text{ pb} (m_t = \frac{175 \text{ GeV/c}^2}{175 \text{ GeV/c}^2})$$

Roma Tor Vergata, Novembre 2007

Slide 26

Dilepton event display

- •2 electrons (E_{T1}=73 GeV, P_{T2}=63 GeV)
- Missing $E_T = 59 \text{ GeV}$
- 2 central jets + 1 forward jet

$e-\mu$ event

Roma Tor Vergata, Novembre 2007

Slide 28

Giorgio Chiarelli

	W + 1 jet	W + 2 jets	W + 3 jets	W+>=4 jets
Secondary vertex sample (~1.2fb ⁻¹)	78903	12873	870	543
Tags	1067	585	185	231

Lepton + jets Channel: H_T cut

- H_T is the scalar sum of E_T of jets, leptons, and \mathcal{F}_T
- H_T is a powerful discriminator for Top signal
- H_T > 200 GeV keep 96% of signal and reject 38% of background

An H_T cut increases the systematics due to Top mass dependence, Energy scale and Heavy flavor fraction, but still small compared with other syst (SF, lum)

Lepton + jets channel: counting events

- Require ≥ 1 jet to be identified as a b-jet ("b-tagged")
- Motivation of using b-tags:
 - ⇒Reduce the backgrounds, especially W + light flavor jets events while keeping good efficiency on ttbar signal
 - \Rightarrow B tag improves S/B from 1/6 \rightarrow 3/1
- Count ttbar candidate events
- Predict rates for SM non-top processes in tagged W+jets, excess in ≥3 jets is top
- Use data as much as possible to determine background contamination (non-W QCD, fake tags)
- Use MC when necessary (diboson, W+heavy flavor)

Tagging Tools: Vertexing and Soft Muons

B hadrons in top signal events:

Roma Tor Vergata, Novembre 2007

Vertex Tagging Algorithm

- Take advantage of the long lifetime of B hadrons: $\tau(b) \sim 1 \text{ ps}$ $(c\tau \approx 450 \ \mu\text{m}) \Rightarrow$ B hadrons travel $L_{xy} \sim 3\text{mm}$ before decay Select good quality tracks with large impact parameter.
- Try to reconstruct a vertex with ≥ 2 traks
 - \Rightarrow first pass searches for at least 3 tracks with loose kin and Pt >2 GeV/c
 - ⇒ second pass looks for 2 tracks vertices with tighter cuts on tracks quality and Pt> 3 GeV/c
- A jet containing a vertex is considered <u>b-tagged</u> if has large (positive) decay length significance: L_{xy} $\sigma_{Lxy} > 7.5$ (typically $\sigma_{Lxy} \sim 150 \ \mu m$)

Giorgio Chiarelli

Roma Tor Vergata, Novembre 2007

Vertex b-Tagging Efficiency

- Use events with back-to-back jets, non-isolated electron, require away jet to be tagged (enriched in heavy flavor)
- The efficiency of b-tagging determined by the ratio of the number of double tagged to single tagged events, in data and MC
- Define a Scale Factor between data and MC tagging efficiency (usually

$$\mathcal{E}_{\text{DATA}} < \mathcal{E}_{\text{MC}}$$
) SF $\approx 0.95 \pm 0.25$

- ⇒ SF < 1 due to # of good vertex tracks higher in MC
- Check in generic jets the E_T dependence of the b-tagging efficiency

 Efficiency for tagging at least one jet in a ttbar event (L+>=3 jets, including data-MC scaling):

$$\varepsilon \approx 60 \pm 4\%$$

Vertex Tagging Background

- Most from W+heavy flavor and W+mistags
- W+mistags: from generic jet data
- In generic jets heavy flavor pairs are produced by both direct production and gluon splitting. In W+jets by gluon splitting only.
 - ⇒The fraction of Wbb, Wcc events is determined from MC and scaled to the observed number of W events in each jet multiplicity bin
- The (smaller) QCD (non-W) background is evaluated from data: lepton isolation vs Missing E_T method (standard)

Non-W "QCD" Background: "Iso vs MET"

The simplest and most discriminating difference between an "isolated" electron as the one coming from the W decay and a jet is the <u>Isolation</u>.

There is NO correlation between Missing Transverse Energy and Isolation for dijet events faking a W->ev candidate.

 \rightarrow "Isorel vs MEI" method

Roma Tor Vergata, Novembre 2007

Non trivial statement

Lepton + jets with = 1 vertex tag:results

Roma Tor Vergata, Novembre 2007

Slide 39

Summary of secondary vertex counting

Require H_T > 200 (250) GeV for 3, \geq 4 jets bins only,

	W + 1 j	W + 2 j	W + 3 j	W + ≥ 4 j
Single tag sample				
Events before tagging	78903	12873	870	543
<u>Observed</u> positive tags	1067	585	185	231
<u>Back</u>	854±225	427±100	53±14	21±8
Loose double tags sample				
Pretag	78903	12873	1515	639
<u>Double tags</u>	-	63	64	101
Back	-	34±10	12±5	4±3

Roma Tor Vergata, Novembre 2007

Slide 40

Giorgio Chiarelli

Tagged Jets Properties

Tagged Jets Properties

The tagged jets are kinematically consistent with the expectation from top, as seen by their E_T distribution

Lepton + jets cross section

1.2 fb⁻¹

- High pt lepton plus missing E_T
- N(jet) \geq 3
- ≥ 1 jet SEC(ondary) VTX
- H_T>200 GeV

$$\sigma(t\bar{t}) = \frac{N(W + \geq 3 \text{ jets }) - N(BKG)}{A \cdot \varepsilon \cdot \int Ldt}$$

A: ttbar acceptance \mathcal{E} : b-jet eff. for ttbar

$\sigma(t\bar{t}) = 8.2\pm0.5(stat)\pm0.8(syst) \text{ pb}$

Assuming a top mass of 175 GeV/c^2

Lepton +jets with ≥ 2 vertex tags

Lower statistics but low background: 79 events observed in top region, 9.1 ± 1.8 bkgd expected

b-tagging efficiency and its uncertainty enters twice here

2 jet bin: 63 events observed, ~ 34±10 bkg. ~ 20 ttbar expected

σ(tt) = 8.8±0.8(stat.)±1.3(sys.) pb

for a top mass of 175 GeV/c^2

Roma Tor Vergata, Novembre 2007

Slide 44

Giorgio Chiarelli

Soft Lepton Tagging

- Leptons from semi-leptonic decays of B have a softer $p_{\rm T}$ spectrum than W/Z leptons and are less isolated
- * Soft Muon Tagger based on a "Global χ^{2} " to identify low- p_{t} muons:
 - \succ "Global χ^2 " combines information from muon matching variables
 - > There is no calorimetry or isolation requirements
- b-tagging with SLTµ:
 - Track with dR slt-jet<0.6, |dZ slt-Zvtx|<5cm & pT>3 GeV/c are considered by the SLTµ tagger
 - An event is tagged if at least one SLTµ tag is found

- $b \rightarrow \ell \nu c \; (\mathrm{BR} \sim 20\%)$
- $b \rightarrow c \rightarrow \ell \nu s \; (\text{BR} \sim 20\%)$

Top cross section summary

Top Mass

Why is Top Mass so special?

• Very important for precision tests of SM.

- •Together with M_w and other electroweak precision measurements, it constrains M_{Higgs}
- By far the largest quark mass, largest mass of all known fundamental particles

Roma Tor Vergata, Novembre 2007

Slide 48

What is the top mass?

- Particle masses are not "directly measured"
 ⇒ one can only measure cross sections, decay rates
- <u>Measurement of M_{top}: at Tevatron, LHC</u>: ⇒ kinematic reconstruction, fit to invariant mass distribution ⇒ Best measurement from lepton +jets
- Experimental accuracy of M_{top}:
 - ⇒ Measurement ⇔ comparison data from Monte Carlo
 - you measure the mass that is implemented in your MC
 measured mass is not strictly model independent
- Situation at the Tevatron:

 $\Rightarrow \underline{\delta M}_{top} = 1.8 \text{ GeV}$ (Tevatron; today, stat+sys.)

Projections at the LHC:

 $\Rightarrow \underline{\delta M}_{top}$ < 1 GeV with 10 fb⁻¹

→Will Tevatron get there first?

Top Mass Measurement Challenges

Why so challenging? It is a difficult measurement Many combinations of leptons and jets: W^+ b-jet Events are complicated! Measurements are not perfect! Х. **Constraints** Experimental observations are not as pretty as Feynman diagrams! W-Missing neutrino Confusion in ID assignment (add. Jets) × jet from ISR/FSR, b-tag: not 100% correct) Link observables to parton-level energies Large syst uncert. from jet energy scale Need accurate detector simulation

> Method: reconstruct M_{top} with 2 constraints: $M(W^+)=M(W^-)$, M(t)=M(tbar)

Lepton + \geq 4 jets: template method

The new CDF top mass measurement in Lepton+Jets channel with 1.7 fb-1

Improve stat. power of the method dividing the sample in 2 categories of events that have different backg. contamination and different sensitivity to the top mass

Categ.	1-tag	2-tag
j1-j3	E _T >20	E _T >20
j4	E _T >20	E _T >12
expback	36.6±7.1	6.4±1.7
Obs.# ev.	218	89

- Subdivision improves statistical uncertainty.
 - \Rightarrow Pure and well reconstructed events contribute more to result.
 - \Rightarrow Adds 0-tag events.
- Subdivision does not improve systematic uncertainty.
 - ⇒ Most systematics, including jet energy scale, are highly correlated among the samples.

Top Mass reconstruction in Montecarlo events

Roma Tor Vergata, Novembre 2007

Slide 53

Giorgio Chiarelli

Mass analysis event selection & Backgrounds

- W+heavy flavor jets(bb,cc,c)
 ⇒ Heavy flavor fraction from MC
 ⇒ Normalized to data
- W+jets(mistag)
 ⇒ Use measured mistag rate, applied to the data
- Multijet:non-W (jet->e, track->µ) ⇒ Estimated from data
- Single top, diboson (WW,WZ) ⇒Estimated from MC

In 1700 pb⁻¹ <u>307</u> candidate events used for top mass measurement

Systematic Errors (based on 318pb⁻¹)

Systematic	$\Delta M_{top} (GeV/c^2)$
Jet Energy Scale	3.1
ISR	0.4
FSR	0.4
PDFs	0.4
Generators	0.3
Background shape	1.0
<i>b</i> -jet energy scale	0.6
<i>b</i> -tagging	0.2
MC statistics	0.4
TOTAL	3.4

Dominated by jet energy scale:

<u>Can we improve jet systematic?</u>

Roma Tor Vergata, Novembre 2007

Slide 55

Giorgio Chiarelli

Systematic Errors

Systematic	$\Delta M_{top} (GeV/c^2)$		B-jet energy	ΔM_{top}
Jet Energy Scale	3.1		scale	(GeV/c ²)
ISR	0.4		Heavy quark	0.4
FSR	0.4		fragmentation	
PDFs	0.4		Color flow	0.3
Generators	0.3		Semi-leptonic	0.4
Background shape	1.0		decay	
<i>b</i> -jet energy scale	0.6		Total	0.6
<i>b</i> -tagging	0.2			
MC statistics	0.4			
TOTAL	3.4]		

Though we find that 70% of JES uncertainty comes from b-jet, b-jet uncertainty is mainly due to generic jet corrections: only 0.6 GeV/c² additional uncertainty on M_{top} due to b-jet-specific systematics

Jet Energy Mismeasurement

Precision on the determination of jet energies is necessary for M_{top} measurements. Jets may be mismeasured due to a variety of effects:

Jet Energy Correction

Determine true "parton" E from measured jet E in a cone 0.4

Jet Energy Systematics

A lot of work has been done to reduce the syst. from jet-energy scale (a factor of two improvement compared to start of RunII). The new Run II systematic uncertainties are now better than Run I.

World's Best Top Quark Mass: M_{top}+ JES simultaneous fit

- Measure JES *in situ*.
- Perform simultaneous fit.

 \Rightarrow Extend 1-D template (only on *reconstructed* M_{top}) to maximize sensitivity to Jet Energy Scale:

 $\Rightarrow M_{top}$ and JES are simultaneously determined in likelihood fit using shape comparisons of *Reconstructed M_{top}* and *Reconstructed M_{jj}* distributions, taking correlations between them

JES and Mtop measurements - 2D Template Analysis -

Simultaneous fit to JES and Mtop using top mass and W mass templates:

Mt (true Mtop, JES), Mij (true Mtop, JES)

- Identify jets coming from W
 - All non-btagged jets pairs are taken into account equally.
 - $1/3/6 M_{ii}$ per event with 2/1/0 b-tag
- Reconstruct their invariant mass M_{ii}
- - M_{jj} strongly dependent on JES
 Make Mjj templates by varying JES
 - Fit data with Wjj to measure JES!
- M_w uncertainty is negligible (< 50 MeV)
- $M_{j,j}$ mostly independent of M_{top}
- This scale is applied to b-jets and light-quark jets

2D Top Mass Result with 1.7 fb⁻¹

Slide 62

JES Results with 1.7 fb⁻¹

$$\Delta_{\text{JES}}$$
 = -0.3 ± 0.6 (stat. + M_{top}) σ_c

 Check if measured error consistent with expected (using pseudo-experiments)

Giorgio Chiarelli

Systematic Uncertainty in 1.7 fb⁻¹

Systematic	∆M _{top} (GeV/c²)	
Residual JES	0.55	From pT and n dependence of
B-jet energy scale	0.6	modeling uncertainties
Bkgd JES	0.38	
Bkgd Shape	0.2	
ISR	0.37	Model constrained by 7+jets data
FSR	0.23	
Generators	0.25	
PDFs	0.17	
MC stats	0.1	1
QCD modelling	0.11	1
TOTAL	1.1	

Systematics are largely due to uncertainties in modeling.

Slide 64

Top mass: matrix element (ME) method

- Optimizes the use of kinematic and dynamic information
- Calculate a probability per event to be signal or background as a function of the top mass
- Signal probability for a set of measured jets and lepton (x)

$$L = rac{1}{N(m_t)} rac{1}{A(m_t, {
m JES})} \sum_{i=1}^{24} w_i \int rac{f(z_1)f(z_2)}{FF} {
m TF}(ec{y} \cdot {
m JES} \mid ec{x}) \mid M_{
m ref}(m_t, ec{x}) \mid^2 d\Phi(ec{x})$$

with $L = L(\vec{y} \mid m_t, \text{JES})$

Transfer function: probability to measure x when parton-level y was produced

Differential cross section: LO ME (qq->tt) only

 Likelihood simultaneously determines M_{top}, Jet Energy Scale, and signal fraction:

$$L(f_{top}, M_{top}, JES) \propto \prod_{i}^{Nevents} \left(f_{top} P_{top,i}(M_{top}, JES) + (1 - f_{top}) P_{bkgd,i}(JES) \right)$$

- All jet-parton assignments and neutrino solutions are considered, weighted.
- Select events with exactly 4 jets, well described by LO ME.

Selection

After kinematic selection:

Background	1 tag	≥ 2 tags
non-W QCD	12.48 ± 10.76	0.42 ± 1.50
W+light mistag	14.52 ± 3.20	0.28 ± 0.08
diboson (WW, WZ, ZZ)	2.95 ± 0.24	0.24 ± 0.02
$\mathrm{Z} ightarrow ee, \mu\mu, au au$	1.72 ± 0.18	0.06 ± 0.01
Sum of above 3	19.19 ± 3.21	0.58 ± 0.08
₩+bō	12.14 ± 4.90	2.46 ± 1.01
W+ $c\bar{c}, c$	11.07 ± 4.50	0.51 ± 0.22
Single top	2.78 ± 0.17	0.83 ± 0.07
Sum of above 3	25.99 ± 9.13	3.80 ± 1.20
Total background	57.66 ± 14.88	4.80 ± 2.37
Events observed	263	80

Measurement

- Each event is treated as top
 We know there is background
 Create a weight to be top or background
- A kinematic NN is applied. Its output used to weight events :
- Also exploited to reject some background

Matrix Element (L+J) Results—1.7 fb⁻¹

- Exactly 4 jets with ≥ 1 b tags and a second s
- JES here is a constant multiplicative factor.
 ⇒ E^{data} = E^{MC}/JES
- JES = 1.02 ± 0.02.
 - ⇒Consistent with template method
- Virtually identical sensitivity with fewer events!
- Using 293 candidates in 1.7 fb⁻¹

 $M_{top}(ME/LJ)=1727\pm1.8(stat+JES)\pm1.2(syst)GeVk^2$

Slide 68

One dimensional projection

If one looks at the 1d projection:

Top mass summary

Tevatron March 07: 170.9± 1.1±1.5

CDF (single measurement) Fall 07 : 172.7± 1.8 ± 1.2

More measurements performed ⇒using other samples

- Discrepancy btw L+jets, Dilepton ch. measurements...?
- Is it statistical?
- Is there a missing systematic?
- Is our assumption of SM ttbar incorrect??

Stay tuned...

The Future Prospects for top mass

- Using W→jj: JES uncertainty becomes mostly statistical So we can reach JES uncert.
 < 1 GeV/c² in Run II
- Reaching total $\delta M_{top} < 1.5 \text{ GeV/c}^2$ can be possible with full Run II dataset

Measurement of Top Quark Production and Decay Properties

- Let's continue on the natural path of measuring top quark properties in order to confirm SM or find deviations from it
 - ⇒ Is top quark adequately described by the Standard Model?

Conclusion

- I just touched two of the basic top physics measurements
 Production cross section
 Measurement of the top mass
- Until the Tevatron will run, it will be the source of knowledge on top physics
 ⇒Interesting check of production and decay
 ✓QCD, structure of EWSB
 ⇒Possible place to look for new physics...

More readings

⇒1994 "Evidence": PRD **50:2966-3026**

✓ A "classic" scientific paper

- Several recent "conference papers" available from http://www-cdf.fnal.gov/physics/new/top/top.html
 - ✓ Measurement of ttbar x-sect in 1.1 fb⁻¹ in l+jets channel CDF note 8795
 - ✓ Measurement of ttbar-xsect in 1.2 fb⁻¹ in dilepton channel CDF note 8802
 - ✓ Template based Top quark mass in 1.7 fb⁻¹ CDF note 8949
 - ✓ Top mass in I+jets with ME in 1.7 fb⁻¹ CDF note 9025
 - Combined cdf top mass results (winter 07) CDF note 8743
 - Tevatron top mass combined (winter 07) CDF note 8735 (anche arXiv:hep-ex/0703034v1 19/03/2007)

⇒Queste lezioni: www.pi.infn.it/~giorgio/