

Si trova a Fermilab...

Villa Gualino, 27 febbraio 2007

Revkiavil

Bermud (U.K.)

Port-a

JAMAICA

Il Tevatron opera da >20 anni

Main Ring

Tevatron

Anello superconduttore di 2π Km, Proton – antiproton Energia cm 1800 GeV Lum.di disegno ~10³⁰ – 10³¹ 2007: >2.5×10³²

Parametri fondamentali

Il numero medio delle interazioni al secondo è dato da:

$$< n >= L(cm^{-2}s^{-1})\sigma(cm^2)$$

Obiettivi e funzionamento

$$L = \frac{10^{-6} fBN_{p} N_{pb} (6\beta_{r}\gamma_{r})}{2\pi\beta^{*}(\varepsilon_{p} + \varepsilon_{pb})} H (\sigma_{1} / \beta^{*}) (10^{31} cm^{-2} s^{-1})$$

	Now	Run 2a goals	units
Protons/bunch	200	270	109
Pbar/bunch	26	30	109
Total Pbar	900	1080	109
Peak Pbar prod. rate	130	200	10º/hour
Pbar: $AA \rightarrow low \beta$	0.60	0.81	
P emittance	20	20	π mm-mr
Pbar emittance	18	15	π mm-mr
Bunch length (p, rms)	0.61	0.37	m
Bunch length (pbar, rms)	0.54	0.37	m
Typical lum.	3.2	8.1	$10^{31} \text{cm}^{-2} \text{s}^{-1}$
Integrated L	5-6.7	16	pb ⁻¹ /week

Running with 36x36 bunches

Run II Luminosity updated Feb 1st, 2007

Villa Gualino, 27 febbraio 2007

Idea base CDF-I

 Soluzione in impulso
 Costruire un calorimetro
 Circa 1981...come sono fatti i jet?
 Torri proiettive per ricostruire i fiotti ⇒Identificazione di flavour pesanti? Decadimento in leptoni?
 Ientificare i leptoni
 Elettroni, mu, neutrini
 E il tau? Boh, chi è?
 ticle Id? Costruire uno spettrometro Costruire un calorimetro Identificare i leptoni Particle Id? ∽ No way Tre livelli di trigger C L1, L2 hardware, L3 versione semplificata dell'offline su farm di processori (primi cluster di VAX...) Secondary vertices ~ Apparsi all'ultimo momento nel TDR (the few, the happy few...) Un esperimento di successo: 1985-1996 🗢 >100 articoli, varie particelle scoperte, scoperta di un quark..

4 layer Si strip detector: 60% acceptance, $\sigma_D = 13 \ \mu m$ CTC large drift chamber: B=1.4 T, $N_{axial} = 60$, $N_{stereo} = 24$, $\Delta p_t/p_t < 0.001 \ p_t$ Projective towers calorimeters: $\Delta \eta x \Delta \phi = 0.1 \times 0.3$, lead/steel-scintillator(PWC) Central muon chambers: $|\eta| < 1$ Forward calorimeters and muon up to $\eta = 4.2$

CDF-II

Partendo da forze e debolezze di CDF-I

- 🗢 Ricostruito completamente il calorimetro in avanti
- Ricostruita la camera centrale (bellissima ma non piu' in grado di sopportare il rate di interazioni previsto)
- ~ Ricostruito il minivertice di silicio

⇒aumentata la copertura, Double Sided (veri)

- $rac{\sim}$ Aggiunto un tracciatore intermedio (grande η)
- Tmplementazione trigger vertici secondari
- Ricostruita elettronica di FE (interbunch da 3.5μs a 132 ns) (sic!)

Sommario:

- 🗢 Ricostruito il sistema di tracking
- 🗢 Ricostruita l'elettronica di FE
- 🗢 Ricostruito gran parte del trigger
- 🗢 Ricostruito il calorimetro in avanti

Quasi un nuovo esperimento

∽ Codice riscritto in C++...

Quale è la fisica di CDF?

Il modello standard (SM) ha avuto un enorme successo nel descrivere le interazioni fondament 'Elementary Particles

Dobbiamo però ancora capire come funziona il meccanismo di rottura della simmetria:

Il bosone di Higgs non ancora osservato

Quale nuova fisica per stabilizzare il settore di Higgs? CDF ha effettuato una serie di misure (e di scoperte) che hanno completato e rafforzato la nostra comprensione del modello standard

> 20 anni di fisica

Ne toccherò solo alcune Concentrandomi sul rivelatore

- > Un pò di fisica EWK
- > Massa del W
- Higgs?

La tipica luminosità iniziale oggi: 200-280x10³⁰

Gli urti al Tevatron

Cosa dobbiamo fare?

Fisica del b

Identificare tracce di basso Pt (separate dal vertice), vertici secondari

Fisica dei getti

Pricostruire fiotti di particelle (misure integrate e differenziali)

Fisica EWK

Identificazione di leptoni isolati, ricostruzione con ottima risoluzione

Fisica top

Tutto quello sopra scritto

Beyond

Tutto più essere pronti per l'imprevisto (flessibilità)

Villa Gualino, 27 febbraio 2007

Principi del PID				
Neutrino:	Jet:	Fotone:		
Nessuna interazione nel rivelatore	Energia rilasciata nel compartimento EM e HAD del calorimetro	Energia depositata in compartimento EM del calorimetro		
Missing Transverse energy: $E_T = \sum_i E_{Ti} \cdot n_i$ $E_T = - E_T$	Geometria proiettiv,a, Algoritmo a cono fisso in $\eta - \phi$, $\Delta R = 0.4$	Nessuna traccia associata		
neutrino	jet p	hoton		

Villa Gualino, 27 febbraio 2007

Cosa è un muone?

Ricostruire i quark -I

Un jet è un oggetto complicato:

Misurato da: torri calorimetricheDefinito da un algoritmo di clustering

Fare analisi con i jet implica che l'energia del jet sia convertia all'energia del partone genitore
Per andare da jet energies a parton energies dobbiamo correggere:
Effetti strumentali
Effetti di fisica
Effetti da Jet Algorithm
Dubbed: Jet Energy Scale (JES)

Ricostruire i quark -II

C'è bisogno delle correzioni alla Jet Energy Scale (JES) per ricostruire l'energia del partone iniziale b-jets sono di eccezionale

valore: si utilizza il vertex tracker per ricostruire i vertici secondari

Cosa è un jet a CDF?

Misure:

Definizione di neutrini

Misure:

 Energia da ciascuna torre calorimetria

Richiesa:

 ∽ Sbilanciamento dell'energia trasversa sopra soglia
 ⇒ Calcolo vettoriale dell'energia nelle torri

Fondi:

- Perdite in zone non strumentate (*cracks*)
- 🖙 Raggi cosmici
- Problemi di funzionamento

CDF: W + 0,1,2,3 jet(s) Events

Villa Gualino, 27 febbraio 2007

Villa Gualino, 27 febbraio 2007

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \textbf{Run 162175 Event 1550545 : } WW \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu \mbox{ Candidate} \\ \hline p_T(e) = 112.7 \mbox{ GeV/c; } p_T(\mu) = 57.0 \mbox{ GeV/c; } M_{e\mu} = 165.6 \mbox{ GeV} \\ \hline \end{cases} \\ \hline \end{cases} \\ \hline \end{cases} \\ \hline \end{cases} \\ \begin{array}{c} \end{cases} \\ \Delta \Phi(\end{cases}_T, \mbox{ lepton}) = 1.2; \\ \Delta \Phi(e, \mu) = 2.4; \mbox{ Opening-Angle}(e^+, e^-) = 1.9 \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{cases} \\ \end{cases} \\ \hline \end{ca$

I rivelatori

Le *segnature* a CDF-I non sono nate prima dei rivelatori ma insieme (o dopo)

∽C'erano idee ma andavano messe in pratica
 ∽C'erano dei rivelatori ma andavano utilizzati
 ⇒Alcuni migliorati o ricostruiti ex-novo

~Alcuni rivelatori non c'erano ed andavano inventati

Nel seguito vedremo alcuni dei rivelatori più significativi e delle scelte più significative fatto dalla Collaborazione

Calorimetria

Calorimetria

Merito principale:

- Misura veloce dell'energia di particelle neutre e cariche
 - ⇒Precisione ∆E/E ~ const./√E migliora con l'energia e complementa le misure fatte dal tracciatore

Funzionamento:

- Ca particella primaria sciama nell'interazione con il materiale
- ∽ La luce emessa nello scintillatore è
 ∞ E persa dai secondari (fluttua con il numero dei secondari)
- $\ensuremath{^{\sim}}$ Luce di scintillazione "shiftata" verso λ matching la QE dei FT
- Cuce trasferita ai FT con fibre ottiche/guide di luce

Calorimetria

Segmentate: CLongitudinalmente ⇒Preshower ⇒Calorimetro EM \rightarrow Shower max detector ⇒Calorimetro adronico ☆Lateralmente ⇒Struttura a torre per identificare e misurare il flusso di energia di fiotti di particelle (getti) \Rightarrow separazione γ/π^0 nei rivelatori shower max /preshower

Central calorimeters

Calorimetro centrale

Assemblaggio e test del calorimetro centrale

	EM	HAD
Segmentation	$\sim 50~{\rm cm} \times 20~{\rm cm}$	$\sim 70~{ m cm} imes 35~{ m cm}$
Total channels	956	1344 (with endwall)
Thickness	18 $X_0, 1 \lambda_0$	$4.7 \lambda_0$
Samples	21-30	32
Active	5 mm Scint.	1.0 cm Scint.
Passive	3.2 mm lead	$2.5 \mathrm{~cm~steel}$
Resolution	$13.5\%/\sqrt{E} + 1\%$	$75\%/\sqrt{E} + 3\%$

Calorimetri "Plug"

		EM	HAD		
	Segmentation	$\sim 8 imes 8 cm^2$	$\sim 24 imes 24 cm^2$		
	Total Channels	960	864		
	Thickness	21 X_0 , 1 λ_0	7 λ_0		
	Density	$0.36 ho_{Pb}$	$0.75 ho_{Fe}$		
	Samples	22 +	23		
	_	Preshower			
	Active	4 mm Scint	6 mm Scint		
	Passive	4.5 mm Pb	2 inch Fe		
	Light Yield	> 3.5	>2		
	(pe/MIP/tile)	—	—		
	Resolution	$16\%/\sqrt{E}\oplus1\%$	$80\%/\sqrt{E}\oplus 5\%$		
Hadronic section EM section	0.25 0.15 0.15 0.15 0.15	End Plug Hadr Relative Energ • pions, min. ic $\sigma(E)/E = 72\%$ • pions, interact $\sigma(E)/E = 78\%$ Plug Preshower HCAL scale set u • 00 150 2 pior	on Upgrade y Resolution onizing in ECAL $i/\sqrt{(E)} \oplus 5.9\%$ cting in ECAL or HCAL $i/\sqrt{(E)} \oplus 5.3\%$ energy not included using dll pions 200 250 300 350 in beam energy (GeV/c)		
Villa Gualino, 27 febbraio 2007 44					

Villa Gualino, 27 febbraio 2007

Villa Gualino, 27 febbraio 2007

Identificazione dei mu

I muoni sono particelle che, ad energie relativistiche, interagiscono poco con la materia

Interazioni deboli ed em

- Bremmstrhalung soppressa rispetto agli elettroni e così sciame em per differenza di masse
- "Firma" caratteristica a CDF-I/II:

🗢 Una traccia nella camera centrale che

⇒Estrapola (entro l'incertezza generata dal multiplo scattering nel materiale attraversato) alle camere per i mu all'esterno del rivelatore →Queste ultime non hanno bisogno di fornire una misura dell'impulso né estrapolare verso l'interno

Aggiunta: particella al minimo di ionizzazione entro il calorimetro

Sistema dei mu

Villa Gualino, 27 febbraio 2007

Sistema di tracciatura

Proposito: ricostruire le traiettorie di particelle cariche

C'è bisogno di molti punti di misura per effettuare un robusto (ed affidabile) pattern recognition

℃ Campo magnetico per misurare l'impulso (1.4 T) Alcuni parametri della traccia:

 \bigcirc Impulso trasverso (p_T):

⇒La risoluzione dipende dalla misura della sagitta e si degrada al crescere del p_T

 \rightarrow A CDF: $\sigma(p_T)/p_T^2 \sim 10^{-3}$ (GeV/c)⁻¹

→Essenziale un tracciatore a grande raggio

 \bigcirc Parametro d'impatto(d₀):

⇒Risoluzione dominata dalla tracciatura vicino al punto d'interazione

→Essenziale il vertice di rivelatori al silicio

 \rightarrow Lo scattering multiplo degrada la ris.fino a p_T ~ 5 GeV/c

<u>→a CDF: σ(D) ~ 10 µm asintoticamente (high p_T) Fondamentale per ricostruire vertica segondario 2007</u>

Geometria delle celle

Catodi

- 🗢 Oro su Mylar
- ~ Mylar spesso 6.4 μm
- ∽ Oro ~350 Å per lato

Anodi

- Tungsteno coperto d'oro
- Diametro 40 μm
- Stesso filo usato per sense e field shaping

Celle ruotate di 35° per corregere effetto $E \times B$ (elettroni non driftano lungo le linee del campo elettrico ma approssimativamente lungo ϕ)

Vogliamo

- ~50 μm/nsec drift velocity
 - ⇒basandoci sull' interbunch di 396nsec e dimensioni cella)
- Forte campo di deriva per minimizzare la carica spaziale (spazza via gli ioni rapidamente)
- ~35° drift angle (basandoci sulla rotazione delle celle)

Villa Gualino, 27 febbraio 2007

Villa Gualino, 27 febbraio 2007

Villa Gualino, 27 febbraio 2007

Rivelatori a semiconduttore a CDF

Rivelatore di vertice (Run I, Run II) Sistema di tracciatura

⇒Si espande il ruolo, Due configurazioni diverse, diversi i problemi

Rivelatori di vertice:

- Utilizzati per ricostruire vertici generati da particelle con vita media dell'ordine dei picosecondi
- Aggiungere pochi punti, estremamente precisi, a tracce i cui parametri sono misurati da un tracciatore diverso Importante minimizzare il Mult.scatt. e posizionare i rivelatori il più possibile vicini al punto di interazione

Vertexing e tracking -II

In un sistema in cui il rivelatore di vertice partecipa alla tracciatura (CMS, CDF ad $|\eta|>1$), bisogna avere un numero sufficente di punti a garantire ridondanza e capacità di effettuare il pattern recognition:

- On c'è più un sistema indipendente che ricostruisce la traccia
- Particolarmente delicato il material budget complessivo (conversioni di fotoni che generano coppie)
- 🗢 Delicato il danno da radiazione

 ⇒noise genera hit spuri il cui combinatorio può annullare le capacità di pattern recognition
 ⇒Cambiamento in efficenza di un singolo strato può incidere sull'efficenza di ricostruzione complessiva

Ricordarsi sempre che una traccia è definita da 5 parametri

Rivelatori al silicio Misura del rilascio di Energia-II

Per particelle cariche si può ricostruire la perdita di energia e deteminare il tipo di particella, se è noto il suo impulso. →Utilizzo come rivelatori di dE/dx

Villa Gualino, 27 febbraio 2007

Ripartizione di carica su elettrodi adiacenti In prima approssimazione la carica raccolta Q_2 su un elettrodo è proporzionale al percorso della traccia nella cella: Q; = cost * L; Q_1 Le fluttuazioni di Landau alterano la proporzionalità fra carica e lunghezza percorsa: δQ; circa 2000e-. Questo peggiora la risoluzione spaziale. $Q_2 \pm \delta Q_{2-Land}$ Inoltre, data la struttura elettrica dei $Q_1 \pm$ δQ_{1Land} sensori, si crea un accoppiamento <u>capacitivo</u> tra due elettrodi adiacenti (C_{int}), con consequente divisione di carica.

CDF Silicon Tracking System

Sistema composto da tre diversi rivelatori

∽ L00

ି SVXII

🗢 ISL

LOO è l'ultimo arrivato (aggiunto), rivelatore singola faccia rad-hard SVXII è stato il primo:

 5 strati doppia faccia (2 r-z stereo e 3 con strip a 90°)

ISL e' il primo tracciatore a grande raggio:

2 strati doppia faccia per 2<|η|<1 ed 1 nella zona</p>

Villa Gualino, 27 febbraio 2007

SVX= L00+SVXII+ISL

SVXII e' il nome dato al rivelatore di vertice costruito in vista del Run II del Tevatron ~E' il terzo minivertice costruito \rightarrow SVX, DC coupled, 4 strati SS, "Evidence for top" \rightarrow SVX', AC coupled, 4 strati SS, "Top discovery" Progettazione partita nei primi anni '90 \rightarrow sopravvivere a 2fb⁻¹ (circa 1 MRad, strato piu' interno) \rightarrow 5 strati, doppia faccia (punti spaziali) ⇒estendere le capacità di *b-tagging* dell'esperimento alla zona in avanti (|η|>2) (2.44 cm < R < 10.6cm) ∽ poter essere utilizzata in un trigger alla ricerca di tracce con grande parametro d'impatto Nel 1996 aggiunti due strati a R=20, 28 cm (ISL) e poi (1999) uno strato rad-hard S.S. ad R=2 cm (LOO) 🗢 sistema integrato di 7÷8 punti spaziali \Rightarrow tracciatore
SVXII

Main CDF silicon vertex detector

- ☞ ISL, LOO are improvements to SVX II
- ∽ Sensors are DS:

 $\Rightarrow 3 \times 90^{\circ} \text{ layers} + 2 \times \text{SAS layers}$ $\Rightarrow R-\phi \text{ pitch} \sim 60 \mu\text{m},$ $R-z\sim60 - 140 \mu\text{m} (\text{SVXII})$

SVX II Parameters		
Number of Barrels	3	
Active length per barrel	29 cm	
Number of layers	5	
Readout coordinates per layer	Φ +z $/ \Phi$ + Φ '	
Radius of inner and outer layers	2.45 cm, 10.6 cm	
Ladders per barrel-layer = Φ sectors	12	
Each 1/2 ladder is one electrical unit of le	14.5 cm	
Total number of electrical Φ sector wedge	72	
Readout channels: Φ	211.968	
Readout channels: z	193.536	
Total	405.504	

L00

Rivelatore più interno di CDF:

- ${}^{\frown}\textsc{Migliora}$ la risoluzione in parametro d'impatto a basso p_{T}
- Sensori connessi ai chips da cavi di Kapton (fino a 40 cm) per evitare materiale nella regione di tracciatura

🗢 Sensori:

⇒ Single sided - accoppiati in AC ⇒ 25 µm pitch, 50 µm readout ⇒ Struttura rad-hard (V_{max}~500 V) ⇒ 128 o 256 canali di lettura/sensore ⇒ usati 144 sensori ⇒ Senconi neffendati a 0 °C pen nidum

⇒Sensori raffredati a 0 °C per ridurre gli effetti della radiazione

SVX II

Varie fasi dell'assemblaggio dei *barrels* di SVXII e della loro installazione

Villa Gualino, 27 feb

CDF Si Detector

Silicon Performance(2)

Riv.al silicio: danno da radiazione

principalmente due fenomeni: danneggiamento superficie

☞ generato dalla creazione di coppie *e-h* nell'ossido. Le lacune sono lente e vengono facilmente intrappolate. C'e' quindi:

⇒accumulo di cariche all'interfaccia Si-SiO₂ con conseguente creazione di fenomeni di correnti di superficie, fenomeni di punch-through etc.

🗢 Sterminata bibliografia e studi

danni nel bulk

∽ danno nel *bulk* dovuto a particelle che creano difetti reticolari nella regione attiva espellendo atomi di silicio dalla loro localizzazione nel cristallo. Tipicamente ciò succede con trasferimenti energetici dell'ordine di 30÷40KeV, nel qual caso l'atomo che rincula ha un range di circa 10nm e crea, a sua volta, una certa quantità di difetti lungo il suo percorso (NIEL, <u>Non Ionizing Energy Losses</u>)

⇒Type inversion

Danno da radiazione

Esempio: vita media del rivelatore di CDF, tabella costruita a partire dalle misure del Run

•		
Layer	safe fb ⁻¹	cause
0 (55)	7.4	Vdep
1 (DS)	4.3(5.6)	S/N(Vdep)
2 (DS)	8.5(10.9)	S/N(Vdep)
3 (DS)	10.7	Vdep
4 (DS)	23(30)	S/N(Vdep)
5(DS)	14	Vdep
6(DS)	>40	n/a
7(DS)	> 40	n/a

Run I data: $r^{-\alpha}$, α =1.7

Run 2 data: $r^{-\alpha}$, consistent with expectations

Problemi inattesi

Nel LOO problemi di rumore

I chip di FE sono stati montati lontani (connessi con cavi al rivelatore) e il pick up ha assunto le caratteristiche di noise coerente

⇒Niente DPS, niente sparsified readout

→Tempi di lettura lunghi, impossibilità ad essere usati online

Nel LOO problemi di radiation hardness

Non del rivelatore

 Ma dei power supplies (utilizzo di un componente rad-soft non esplicitamente citato nelle specifiche)
 In SVX II interruzione inattesa del funzionamento del chip

Interi rivelatori "dead"

Rotture delle microsaldature

Perdita di potenza sulla parte digitale di 13/360 lati Z di SVXII Ipotesi: sforzo da forza di

Lorentz

∽Saldatura *I* ortogonale a B

 $rac{}{\sim} I \propto$ occupancy

 \bigcirc L1A rate \Rightarrow Risonante?

Test convincenti

⇒<u>filmato</u>

- ℃Cambiati i settings operativi
- 🗢 Ora funziona

Si continua a monitorare il problema

Villa Gualino, 27 febbraio 2007

Villa Gualino, 27 febbraio 2007

Secondary Vertex Tagging

Efficenza di b-tag migliore del Run I

∽ e.g. ~55% tag rate per eventi contenenti coppie ttbar

L'efficenza di tagging continua a migliorare..

- Al momento si usano solo tracce con |η| < 1.1 per ricostruire i vertici secondari
 - ⇒Uso del forward tracking fino a |η| < 2.0?
- Degrado dell'efficenza di tagging in corrispondenza delle gap nell'accettanza

⇒ Forse si può ovviare usando il LOO

SVT- tracce con grande d₀ a L2

La ricostruzione di tracce a L1 permette ... ← Con Silicon Vertex Tracker (SVT) si può ⇒triggerare a L2 su tracce non provenienti dal primario Fondamentale per \bigcirc B Physics (basso P_T) Potenzialmente importante per \bigcirc Eventi di high P_T contenenti B \Rightarrow Top, Higgs

Nuove possibilità di fisica...

B Physics:

- ∽B→hh
- Bs mixing
- Tutta una serie di canali di decadimento completamente adronici

Alto PT

- ∽ Z→bb
- ☞ Higgs ? (in progress)

Competitore:

 Selezione di trigger indipendente dalla presenza di un vertice secondario e vertice secondario ricostruito off.

Alcuni esempi illustrativi

Senza nessuna pretesa di affrontare i dettagli di queste analisi

🗢 Alcuni utilizzi dei rivelatori che vi ho mostrato

Esempio illustrativo

 ⇒ Fisica elettrodebole: Discovery today background tomorrow..
 ⇒ Processi ben compresi a livello teorico → Benchmark per rivelatori, algoritmi etc.
 ⇒ Tuning di MC, simulazioni etc

Example: W selection

requirement	N.of events	East	West
Trigger	1.09734×10^{6}	N/A	N/A
Nprimary => 1	976373	N/A	N/A
$ P_{VZ} < 60 \text{ cm}$	762572	N/A	N/A
At least one Em object	761831	523044	501294
plug region and 1.1< $ \eta <2.8$	716279	397480	393653
$E_T > 20 \text{ GeV}$	691829	351248	349682
$MET > 20 { m ~GeV}$	243650	117236	128068
Isorel< 0.1, Had/Em< 0.05	90265	43098	47167
Matching track	18181	9357	8824
0.5 < E/p < 2	10461	5409	5052
E/D			

W mass

Incertezze...

Una misura in cui il controllo della sistematica è tutto.. ^{CDF II preliminary} L = 200 pb⁻¹

	CDF II preliminary			L = 200 pb
••	m _T Uncertainty [MeV]	Electrons	Muons	Common
	Lepton Scale	30	17	17
	Lepton Resolution	9	3	0
	Recoil Scale	9	9	9
	Recoil Resolution	7	7	7
	u _{II} Efficiency	3	1	0
	Lepton Removal	8	5	5
	Backgrounds	8	9	0
	p _T (W)	3	3	3
	PDF	11	11	11
	QED	11	12	11
	Total Systematic	39	27	26
	Statistical	48	54	0
	Total	62	60	26

CDF II preliminary

L = 200 pb⁻¹

			_
MET Uncertainty [MeV]	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	5	0
Recoil Scale	15	15	15
Recoil Resolution	30	30	30
u _{II} Efficiency	16	13	0
Lepton Removal	16	10	10
Backgrounds	7	11	0
p _T (W)	5	5	5
PDF	13	13	13
QED	9	10	9
Total Systematic	54	46	42
Statistical	57	66	0
Total	79	80	42
\			

CDF II preliminary			L = 200 pb ⁻¹
p _⊤ Uncertainty [MeV]	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	17	17	17
Recoil Resolution	3	3	3
u _{II} Efficiency	5	6	0
Lepton Removal	0	0	0
Backgrounds	9	19	0
p _T (W)	9	9	9
PDF	20	20	20
QED	13	13	13
Total Systematic	45	40	35
Statistical	58	66	0
Total	73		35

Cercare l'Higgs?

🗢 Le sezioni d'urto indicano che bisogna lavorare con

WH→WWW D0: 360-380 pb⁻¹

H→WW^(*)→I D0: 930-950 p

D0 combined with H→WW: 930-950 pb⁻¹

 $H \rightarrow WW^{(7)} \rightarrow lyh$ D0: 300-325 pb

July 27, 2006 NNLO cross sections

CDF e D0, 1 fb⁻¹

Possiamo fare di meglio?

- Ottimizzazione selezione
- ∽ Ottimizzazione b-tagging
- $rightarrow Z \rightarrow bb$ (risoluzione in ΔM)
- Tracking..
- Benefici variano al variare del canale..
- Un esempio concreto ⇔"Default tracking" capito (misure fisica) →Abbiamo capito come riguadagnare eff

Miglioramenti...

....

C'è una tabella "ufficiale"

Luminosity Equivalent (s/\b)2 ZH→llbb ZH→wbb Improvement WH→lvbb Mass resolution 1.7 1.7 1.7 13 Continuous b-tag (NN) 1.5 1.5 Forward b-tag 11 11 1.1 Forward leptons 13 1.0 1.6 Track-only leptons 14 1.0 1.6 1.75 NN Selection 1.751.0 WH signal in ZH 1.0 2.71.0 Product of above 7.28.9 13.3 CDE+DØ combination 2.0 2.02.0All combined 17.8 26.6 14.4

Giorgio Chiarelli, INFN Pisa

Ma non è completa: Ad esempio manca il canale H-->WW(*)

Ma mancano anche i problemi:

 Trigger di μ ad alta luminosità (curato da upg XFT)

CDF, WH→lvbb

1 fb-1

Higgs Mass	Upper Limit (pb)		
(GeV/c^2)	Observed	Expected	
110	3.9	2.2	
115	3.4	2.2	
120	2.5	2.0	
130	1.6	1.8	
140	1.4	1.7	
150	1.3	1.5	

