I rivelatori a seminconduttore

Giorgio Chiarelli INFN Pisa

Corso di tecniche sperimentali della Fisica Nucleare e Subnucleare

Dottorato Roma 2 , 19-20 Aprile 2011

http://www.pi.infn.it/~giorgio/didattica/Roma2-2011.pdf

Silicio e particelle

diodi, giunzioni etc

dal diodo al rivelatore

fipi di rivelatori (CCD, Pixel, Microstrip)

danno da radiazione

Negli esperimenti ad acceleratori

I rivelatori a seminconduttore oggi

- 🖛 Rivelatori di
 - → fotoni→ particelle cariche
- Dove?
 - → nei laboratori
 - → aereotrasportati (nello spazio)
- ✓ Per quali applicazioni ?
 → sistemi di tracciatura
 → identificazione di fotoni
 → misure di energia

2

Spazio...

• Spin-down luminosity $\sim 10_{36}$ erg s-1, sufficient to supply the PWN with magnetic fields and energetic electrons.

• The γ -ray flux from the CTA 1 pulsar corresponds to about 1-10% of Erot (depending on beam geometry)

<u>Cosa</u> hanno in comune?

Rivelatori a seminconduttore in HEP

- 🖛 Due gli usi
 - → Rivelatore di vertice
 - → I primi costruiti, e gran parte degli utilizzi fino ad oggi
 - → Sistemi di tracciatura
 - → Si espande il ruolo, stanno prendendo sopravvento
- Due configurazioni diverse, diversi i problemi
- Rivelatori di vertice:
 - → Utilizzati per ricostruire vertici generati da particelle con vita media dell'ordine dei picosecondi
 - → Aggiungere pochi punti, estremamente precisi, a tracce i cui parametri sono misurati da un tracciatore diverso (spesso a gas)
 - → Importante minimizzare il Mult.scatt. e posizionare i rivelatori il più possibile vicini al punto di interazione

5

Cosa sono chiamati a risolvere?

Più di 1000 tracce per evento Almeno un PR plot?

Il tracker di CMS

Segmentati nella parte longitudinale

Silicio ad alta granularità Rivelatori a Microstrip e Pixel

Ruolo: Vertexing e tracking

Beam pipe (M. scattering)

Ruolo: Vertexing e tracking

- In un sistema in cui il rivelatore di vertice partecipa alla tracciatura (CMS, CDF ad |η|>1), bisogna avere un numero sufficente di punti a garantire ridondanza e capacità di effettuare il pattern recognition:
 - → Non c'è più un sistema indipendente che ricostruisce la traccia
 - → Particolarmente delicato il material budget complessivo (conversioni di fotoni che generano coppie)
 - → Delicato il danno da radiazione
 - →noise genera hit spuri il cui combinatorio può annullare le capacità di pattern recognition
 - →Cambiamento in efficenza di un singolo strato può incidere sull'efficenza di ricostruzione complessiva
- Ricordarsi sempre che una traccia è definita da 5 parametri

L'allineamento innanzitutto

- Il primo problema è allineare i rivelatori
 - → Localmente grande precisione nella misura di posizione
 - → Bisogna però sapere dove si è nello spazio!
- Tracce (possibilmente isolate)

- Use 4M tracks for alignment and 1M for validation
- The second update on alignment constants delivered 1 day after CRAFT ended

Mean of residual distributions (cm), sensitive to module displacements Only modules with >30 hits considered

Esempio: CMS, pixel e tracciatore

Efficenza

On track Strip clusters S/N ratio in peak mode of the read-out chip, corrected for the track angle

- TOB thick sensors : S/N = 32
- TIB/TID thin sensors : S/N = 27/25
- TEC (mixed thickness) : S/N = 30

Track hit finding efficiency of TIB and TOB layers, excluding modules not in operation

Funzionano!

B-tagging algorithm found a secondary vertex made of 4 tracks • 3D Decay length 2.6mm (significance 7.02), mass = 1.64 GeV

Tracciatore, LHC beam 2009-2010

Linee guida

- Vedremo che i rivelatori al silicio sono intrinsecamente semplici
 - → soddisfano alla richiesta di uno dei maggiori architetti del XX secolo (Mies van der Rohe):
 - →less is more
- Questa semplicità ha un'altra faccia: la larga diffusione di questi rivelatori implica la risoluzione di problemi tecnologici tutt'altro che banali ed una attenzione esasperata ai dettagli
 - \rightarrow stesso architetto:
 - \hookrightarrow God is in the details

RIVELATORI al SILICIO per FISICA delle ALTE ENERGIE

MOTIVAZIONI: Misurare posizione (centroide del luogo del rilascio di energia) e perdita di energia per particelle cariche e fotoni

Vedremo:

i) il diodo a giunzione:

- •principio di funzionamento ed effetti rilevanti
- •elettronica
- •misure dE/dx
- ii) rivelatori a strip (e pixels)
 - •la segmentazione degli elettrodi
 - •misure di posizione

Le basi del funzionamento

- Come funziona

 Quali sono i problemi da tenere presenti per le nostre applicazioni

Passaggio di particelle cariche nella materia:18 perdita di energia per ionizzazione

$$\langle dE / dx \rangle = k \frac{Z}{A} \frac{1}{\beta^2} \left(\frac{1}{2} \ln \left(\frac{2mc^2 \beta^2 \gamma^2 T_{Max}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right)$$

Perdita di energia per ionizzazione (interazione coulombiana fra la particella e gli elettroni atomici) data dalla formula di Bethe-Bloch

 $\begin{array}{l} {\sf K} = 0.307 \; {\sf MeV/cm^2} \\ {\sf I} = energia \; media \; di \; eccitazione \\ \delta = correzione \; di \; densita' \\ {\sf T}_{max} = energia \; massima \; trasferibile \\ \; all'elettrone \end{array}$

Passaggio di particelle cariche nella materia: tasso di ionizzazione

Il numero di cariche elettriche *generate* per unità di lunghezza è proporzionale allla perdita di energia. La costante di proporzionalità si dice "energia media di ionizzazione":

$$\frac{\# cariche \ prodotte}{materiale \ attrav.} = \frac{dE / dx}{\left\langle E_{ionizz} \right\rangle}$$

Nei semiconduttori le coppie prodotte sono elettroni-lacune.

Il valore di <E_{ionizz}> nel Silicio (il semiconduttore più comune): 3.6 eV Una trattazione più rigorosa ha bisogno di prendere in considerazione effetti <u>quantistici, e l'interazione tra i fo</u>toni e gli elettroni

Silicon	Gas
3.6 eV/pair	10-30eV/pair
2.33g/cm ³	1.5 10 ⁻³ g/cm ³
<10 μm	≈100 µm
10⁵pairs/mm	15 pairs/mm

La tabella a sx mostra la comparazione di alcuni parametri che differenziano il silicio dal gas e quindi i rivelatori al silicio da quelli a gas Passaggio di particelle cariche nella materia: fluttuazioni della perdita di energia per ionizzazione

La perdita di energia per ionizzazione fluttua attorno al valor medio (dato da Bethe-Bloch) \rightarrow distribuzione di Landau.

La distribuzione di Landau non è simmetrica attorno al valor medio, a causa degli elettroni energetici che si possono produrre.

E' tuttavia approssimabile con una gaussiana per grossi spessori (nel silicio ≈100 µm):

 $(dE/dx)\Delta x \gg T_{max}$

Una possibile parametrizzazione della distribuzione di Landau è:

$$f(\Delta E) = cost exp[-(\Delta E-m)/s - exp(-(\Delta E-m)/s)]$$

Trattamento più dettagliato del rilascio di carica

La perdita di energia è un processo quantistico.

Buoni risultati si ottengono a partire dalla sezione d'urto di foto-assorbimento (utile sia per fotoni reali che per particelle cariche utilizzando il metodo dei fotoni virtuali).

Un trattamento esatto e' necessario nel caso si considerino spessori molto sottili:

• *in media*, si ottengano ~80 coppie *e-h/µm* di silicio la statistica di Poission del processo *primario* è di appena 3.8 collisioni/µm e quindi c'è una probabilita' del 2.2% che non ci sia rilascio di carica in 1 µm.

Problematiche: Delta rays e risoluzione spaziale

- C'è una probabilità non zero per un elettrone di essere espulso con un'energia cinetica sufficiente a lasciare un segnale *rilevante*.

 cioè un segnale sufficiente a modificare la nostra misura
- Es. la probabilità per un π di alta energia, attraversando 100 μ m di silicio, di estrarre un e⁻ di E_{cin} > 10 KeV è superiore al 10%. In un caso del genere il centroide di carica si sposta di ~5 μ m.
 - → Tipico spessore: 300 μm la probabilità di spostare il centroide è elevata
 - → P≈8% di generare un δ ray tale che il centroide di carica si sposti di 5 µm per un rivelatore (incidenza normale) da 300 µm. Precisioni tipiche di un rivelatore del genere sono facilmente inferiori ai 15 µm

Figure 11 Detector precision limitations from δ -electrons for tracks at normal incidence as a function of detector thickness.

Problematiche:

Passaggio di particelle cariche nella materia: multiplo scattering coulombiano

Particella carica

Secondo il trattamento di Molière. Per piccoli angoli (98% dei casi) la deflessione può essere parametrizzata da una gaussiana con rms:

$$\theta_0 = \theta_{\text{rms(piano)}} = \theta_{\text{rms(spazio)}} / \sqrt{2} \qquad \qquad \theta_0 = \frac{13.6 MeV}{\beta cP} \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln\left(\frac{x}{X_0}\right) \right]$$

Tenete però sempre presente che questa è un'approssimazione. Grandi angoli di deflessione e code non gaussiane possono assumere un ruolo importante. Questo ha implicazioni in simulazioni, studi di risoluzione, etc.

Problematiche: Material budget: il silicio conta poco

L'elettronica costituisce una fonte di noise per il patrec

Anche nei rivelatori più moderni

- Lunghezza di radiazione nel tracker di ATLAS:

(see http://www.hep.phy.cam.ac.uk/~cpw1/atlas.html)

Alcune letture

 Discussioni approfondite sulla perdita di energia nei materiali e nel silicio si trovano in:

→ Ugo Fano, Ann. Review Nucl. Science 13,1 (1963)
 → Hans Bichsel, Rev. Modern Physics, Vol. 60,N. 3 (1988)
 → G. Fraser et al., NIM A 350 (1994), 368

→ A. Owens et al., NIM A 382 (1996), 503

→ P. Lechner, L. Struder, NIM A 354 (1995), 464

Rivelatori a Seminconduttore

- Rivelatori a semiconduttore sono basati sulla seguente osservazione :
 - → particelle cariche che passano nel silicio rilasciano energia che crea 80 coppie e-buca per μm (3.6 eV)
 - → il contatto tra due semiconduttori di tipo p ed n genera una giunzione (e⁻ diffondono verso il lato p e le *lacune* viceversa). Si crea una regione svuotata da portatori di carica
 - → si può raccogliere la carica creata nella regione dal rilascio di energia che avviene a causa dell'interazione di una particella con il silicio
 - → si può allargare questa regione applicando un campo elettrico esterno
 - → Ridotto all'essenza un rivelatore e' semplicemente un diodo
 - → Il resto è "solo" elettronica, segmentazione ...dettagli

Ricordiamoci di van der Rohe

DAL SILICIO AL RIVELATORE: IL **DIODO** POLARIZZATO INVERSAMENTE

Date le proprieta' ottimali del silicio, in termini di energia rilasciata, come si fa a rivelarla ?

Energia persa da 1 m.i.p. in Silicio: 290eV/ μ m => 80 coppie e-h/ μ m

corrente di pochi μ A da confrontarsi con la corrente di diffusione. In un silicio intrinseco n = p \cong 1.5x10¹⁰ cm⁻³

Se utilizziamo silicio drogato (es: ntype 10¹⁶ cm⁻³) le cariche rimanenti sono portatori maggioritari.

Come ridurre la corrente (di *leakage*) da essi generata ?

La corrente di *leakage* che passa in un diodo polarizzato inversamente è molto piccola e costituisce un livello costante, con fluttuazioni. Il rilascio di carica di una particella ionizzante che passa attraverso uno strato di silicio può essere rivelato.

Dal silicio non drogato ai rivelatori

- Le proprietà del silicio erano ben note ed utilizzate da tempo in fisica nucleare. La svolta si ebbe alla fine degli anni '70 quando la scoperta di particelle a vita media lunga (c e poi b) avviò una vera e propria rivoluzione. Furono sviluppati diodi (come rivelatori) utilizzando sia la giunzione Schottky (metallo-semiconduttore) (Heijne, NIM 1980), sia la giunzione p-n.
 - La seconda strada (giunzione p-n) conobbe rapidamente il successo, grazie soprattutto al lavoro di Kemmer (NIM 169, 499, 1980) che riuscì a passivare una superficie ampia grazie ad uno strato di SiO₂. Divenne realistico applicare ai rivelatori tecniche sviluppate per IC (planar technnique). Vedi:
 - → Bosisio NIM 176,457 (1980); Weilhammer NIM 185,43 (1981); Lutz Batavia 1981.
- Tipicamente i rivelatori sono costruiti utilizzando silicio di tipo n, per motivi legati alla facilità di fabbricazione
 - → Nel trattamento (semplificato) assumeremo che -all'interfaccia p-n- la densità di cariche nel silicio faccia un salto: da $p=-qN_D$ a $p=+qN_A$.
 - L'interfaccia e' nota come "zona svuotata".
 - Inoltre assumeremo che, in presenza di campo elettrico, nella zona svuotata siano presenti solo cariche dovute al drogante

Drogaggi e valori tipici:

- p+ (eg: Boro) $N_{A^+} \sim 10^{19} \text{ cm}^{-3}$, profilo tipico gaussiano
- n+ (eg: Fosforo) $N_D^+ \sim 10^{19} \text{ cm}^{-3}$, profilo tipico gaussiano
- n- (eg: Fosforo) $N_D \sim (2-15)10^{11} \text{ cm}^{-3}$, profilo circa uniforme

Come si costruisce un rivelatore...

AL PATTERNING AT THE FRONT AL - REAR CONTACT

Dal silicio drogato al rivelatore: (Kemmer 1981):

- → si ricopre il silicio di ossido
- \rightarrow si aprono delle finestre nell'ossido con tecniche di etching
- → per impiantazione ionica si crea la giunzione (silicio di tipo p a contatto con silicio n)
- *→* annealing
 - → qui cambiamento...oggi
- → metallizzazione degli impianti
- → creazione del pattern dal lato giunzione e dei contatti dal lato ohmico
- 🖛 nella sua struttura basilare la procedura non è cambiata

RIVELATORI al SILICIO CAMPO ELETTRICO ALL'INTERNO di UN DIODO - 1

RIVELATORI al SILICIO CAMPO ELETTRICO ALL'INTERNO di UN DIODO - 2

Seconda situazione: $x_{dep} = W$ (svuotamento totale) Si ha: $E_x = -E_J + qN_D \times /\epsilon$ con $W = (2\epsilon V/qN_D)^{1/2}$ che è vera per $V = V_{TD} = qN_D W^2/2\epsilon \rightarrow E_J = 2V_{TD}/W$ Caso numerico: per $N_D = 5 \times 10^{11} \text{ cm}^{-3}$ si ha $V_{TD} = 35V$ ed $E_J = 2.3 \text{ KV/cm}$

Terza situazione: per $V > V_{TD} =$ Si ha (come sopra): $E_x = -E_J + qN_D \times /\epsilon$ con V_{TD} definito sopra, mentre: $E_J = (V + V_{TD}) / W$ 2 casi numerici: $V_{TD} = 35V, V = 45V \rightarrow E_J = 2.7KV/cm$ $V_{TD} = 100V, V = 300V \rightarrow E_J = 13.3KV/cm$

Nota: per V≫V_{TD} |E_× | ~ V/W

RIVELATORI Al SILICIO TEMPI DI SVILUPPO DEL SEGNALE

Il tempo *†* impiegato dalla carica a raggiungere l'elettrodo è:

$$t = \int dt = \int dx / v = \int_{0}^{W} \frac{dx}{\mu E} = \frac{W^{2}}{2\mu V_{TD}} \ln(\frac{V + V_{TD}}{V - V_{TD}})$$
2 casi numerici:
• $V_{TD} = 40V, V = 60V \rightarrow t_{h} = 16 \text{ ns}, t_{e} = 5\text{ ns}$
• $V_{TD} = 100V, V = 200V \rightarrow t_{h} = 9. \text{ ns}, t_{e} = 3.\text{ ns}$
per $V \gg V_{TD}$ $t = W^{2} / \mu V$
Signal charge q_{s}

RIVELATORI al SILICIO MISURA del RILASCIO di Energia

Carica generata dal rilascio di energia : $Q = Q_0 + \delta Q_{Lan}$ con $Q_0 \sim 24,000e^{-1}$ e $\delta Q_{Landau} \sim 2,000 e^{-1}$ Parametro importante è la corrente di leakage. Per referenza futura vediamone l'andamento con la temperatura: $I(T)=KT^2 \cdot exp(-Eg / (2 \cdot k_B \cdot T))$ Carica misurata: $Q = Q_0 + \delta Q_{Land} + \delta Q_{noise}$ con δQ_{noise} fluttuazione dovuta al rumore (shot noise, termico nei resistori, e nell'amplificatore) Noise tipico (in ENC) 400-2,000 e⁻¹

RIVELATORI al SILICIO MISURA del RILASCIO di ENERGIA

Per particelle cariche si può ricostruire la perdita di energia e deteminare il tipo di particella, se è noto il suo impulso. →Utilizzo come rivelatori di dE/dx

37

Phi Q

RIVELATORI al SILICIO: EFFETTI della DIFFUSIONE

Senza la diffusione, le cariche seguono le linee di forza di E

Con la diffusione, le cariche non seguono le linee di forza di E

Con la diffusione, una carica che impiega un tempo t per raggiungere l'elettrodo avrà una fluttuazione sulla posizione con rms $\sigma_{\rm diff}$

$$\sigma^2_{diff}$$
 =2 Dt D = (kT/q) μ (coefficiente di diffusione
nel modello di Einstein)
D_e = 34.6 cm²/s D_h = 12.3 cm²/s (a temp. ambiente)

Esempio: V=100V \gg V_{TD} W=300µm $\rightarrow \sigma_{diff}$ =(2Dt)^{1/2} = W(2kT/qV)^{1/2} =6µm, non dipende dalla natura della carica (elettroni o lacune)!

per V
$$\gg$$
V_{TD} † = W²/ μ V ... pagina 29

RIVELATORI al SILICIO: EFFETTI del CAMPO MAGNETICO

generalmente è un effetto <u>non</u> trascurabile in applicazioni in cui si misura la posizione spaziale!

```
Esempio: drift di e-,
d=300µm , B=1.5T
→d tanθ = 66µm
```

Il campo magnetico (qui ipotizzato perpendicolare al campo elettrico interno al rivelatore) inclina la direzione del moto delle cariche di in un angolo θ : tan $\theta = \mu B$

- \bullet l'effetto puo' rivelarsi critico se $\mu B \sim 1$
- può essere compensato inclinando il rivelatore
- si noti che μ_e =1350cm²/Vs =0.135T⁻¹, μ_h =0.045T⁻¹
- \cdot CMS ha un campo magnetico da 4 T e spessori di 500 μm

Come misurare la posizione?

SEGMENTAZIONI degli ELETTRODI

Strip single-sided: misura 1 cooordinata

Strip double-sided (ortogonali o stereo): misura 2 cooordinate

in questo caso si usufruisce anche di una correlazione di carica tra i due lati. Si puo' usare per risolvere le ambiguità.

Misurano 2 coordinate: •Pixel (veloci) Elevato numero di canali difficoltà di readout •CCD (Charge Couple Devices) lenti ma senza grossi problemi di readout

Esistono anche sensori noti come *silicon drift chamber*

Rivelatori a microstrip-I

Dato un diodo con una superficie sufficiente

- → si puo' dividere una delle facce in elettrodi tra loro separati
 - →di fatto ciascuno è un diodo separato
 - →nella maniera più semplice i rivelatori a singola faccia sono composti da un bulk (n type) sul quale sono stati impiantati elettrodi p type(p+) (per creare la giunzione).
 - →Ciascuno di questi deve agire come un elettrodo completamente separato quindi
 - →bias applicato individualmente
 - →lettura del segnale fatta individualmente

Layer 4, Z-side

RIPARTIZIONE di CARICA su DUE ELETTRODI ADIACENTI

In prima approssimazione la carica raccolta su un elettrodo è proporzionale al percorso della traccia nella cella: $Q_i = cost * L_i$

Le fluttuazioni di Landau alterano la proporzionalità fra carica e lunghezza percorsa: δQ_i circa 2000e-.

Questo peggiora la risoluzione spaziale.

Inoltre, data la struttura elettrica dei sensori, si crea un accoppiamento <u>capacitivo</u> tra due elettrodi adiacenti (C_{int}), con conseguente divisione di carica.

Sommario (Intermedio)

- i rivelatori sono costituiti da un "bulk" su cui sono state impresse per mezzo di tecniche litografiche le strutture appropriate
 - Schematicamente impianto p su bulk n; V_{bias} va fornito individualmente a ciascuna struttura (pixel, strip). il segnale e' raccolto su elettrodi di metallo e l'elettronica di F.E. è direttamente connessa agli elettrodi

→in questo caso si parla di accoppiamento in DC

→Oppure connessa all'elettronica attraverso un condensatore di disaccoppiamento (AC)

AC - DC

- → Abbiamo introdotto il concetto di accoppiamento in DC
 - → il rumore risente direttamente della corrente di leakage di una singola strip e l'elettronica di lettura la integra
- → In un rivelatore normalmente il preamp viene disaccoppiato a mezzo di un condensatore.
 - →Nel caso dei rivelatori a microstrip è ovvio includere i condensatori nel disegno e fabbricarli sul silicio stesso
 - in questo caso si dice che è accoppiato in AC e il condensatore e' ottenuto inserendo un certo spessore di dielettrico (SiO₂) tra la strip e la metallizzazione

Rivelatori a microstrip II

 Ogni strip (p+) agisce come un elettrodo: rivelatore single sided

- e se di dividesse anche il lato ohmico in strip?

- → Qui possiamo impiantare delle strip (n+). Sono isolate tra loro una volta che il silicio e' svuotato?
 - →Bisogna considerare che ci sono cariche positive intrappolate nell'interfaccia Si-SiO₂.L'attrazione tra queste e gli elettroni nel bulk di tipo *n* crea un layer di accumulazione vicino la superficie. Le striscie sono cortocircuitate ed è impossibile estendere il campo elettrico fino ad isolare le striscie n+.

→Per ottenere l'isolamento vengono circondate da impianti (abbastanza profondi) di tipo p+.

 \rightarrow Le strip cosi' ottenute sono isolate !

rivelatore double sided (vero!)

RIVELATORI al SILICIO SEGMENTAZIONI degli ELETTRODI - METODO

Lato p: sufficiente dividere l'impiantazione p+ Lato n: dividere l'impiantazione n+ ed inserire un p-stop fra gli elettrodi n+

Sommario dei principali parametri

- Carica raccolta è \propto allo spessore svuotato (W)
- Trisultati seguenti si ottengono risolvendo le eq. Poisson nella giunzione
 - $\mapsto W = (2 \epsilon_r \epsilon_0 V_{\text{bias}} (N_A + N_D) / (q N_A N_D))^{1/2}$
 - → nel caso di una giunzione p⁺n⁻ N_A≫N_D: W=(2 ε V_{bias} ρ μ_e)^{1/2}

 $\mapsto \varepsilon = \varepsilon_r \varepsilon_0 e \mu_e e$ la mobilita' degli elettroni:1350 cm²V⁻¹s⁻¹

✓ Il rumore dipende dalla capacità che si presenta al preamp
 → la capacita' di un diodo planare (bulk) per unità di area è
 C= dQ_{ch}/dV = ε /W dove Q e' la carica per unità di area nella giunzione, quindi C è ∝ a V^{-1/2}_{bia}

→ In un rivelatore a microstrip è rilevante la capacità tra strip e strip
 → In un rivelatore a microstrip C _{bulk} e' una piccola parta della capacità totale: C= C_{bulk}+C_{int}

S ∝ a W, noise in parte ∝ a 1/W
→ un tipico valore della C_{int} è 1÷1.2 pF/cm

Rumore e tensione di svuotamento in un rivelatore Double sided

- Al variare della tensione di svuotamento il noise deve diminuire
 - → Sul lato della giunzione quasi immediatamente poiché domina la componente interstrip
 - Sul lato ohmico perchè entrano in funzione i p-stop e le strip n+ sono progressivamente isolate dalle vicine, rimanendo solo l'accoppiamento capacitivo tra di esse. Questo avviene quando il campo elettrico raggiunge i p-stop (e quindi il lato n).
 - → a destra un caso (preso a caso tra 156 rivelatori composti ciascuno da tre sensori microsaldati tra loro)

Risoluzione spaziale- due opzioni

- Readout digitale
 - → Binary readout (yes/no)

deriva direttamente dal pitch

- Readout analogico
 - → Si basa sulla diffusione (allargamento della nuvola di carica)

$$\sigma_x \propto \sqrt{t_{coll}}$$

→ Risoluzione dell'interpolazione dipende dal pitch e da S/N

Problematica del rumore

- Abbiamo già visto che il rumore dipende dalla capacità di input. Senza entrare nei dettagli, teniamo presente che quella in basso e' la rete equivalente per un rivelatore:
 - → riduzione della C_{inp} ,(disegno del rivelatore, C_{int}) tenere la corrente di leakage bassa (cooling) e stabile, evitare pick-up ambientali (supporti)...
- la maggior parte dello sforzo di fabbricazione di un rivelatore e tanto più di un sistema complesso con O(10⁵-10⁶) canali è nel controllare il rumore (sia la baseline che le sue fluttuazioni)

Noise ed utilizzo dei rivelatori: Parametri importanti

risoluzione spaziale

- → normalmente non è un problema (almeno in linea teorica). limitazioni:
 - → numero canali (\$,Euro, materiale etc)
 - \mapsto Risoluzione 12 μ m NIM: 214;253,1983

rapporto S/N

- → è un parametro con un ruolo nella risoluzione, ma soprattutto
 - → nell'identificazione degli hit (pattern recognition)
- \mapsto ha due aspetti:
 - \rightarrow Segnale : O(30,000) e⁻ per part.carica
 - \mapsto Rumore: ENC 300-500e⁻+K*C_{inp}(pF)
 - → tipica capacita' di input ≈1.1-1.2 pf/cm
- → Un "buon" valore per S/N stabilito dalla pratica. Ad esempio, in un sistema di microvertice assumiamo che
 - → S/N= 7:1 sia marginale per effettuare pattern recognition

→ ("hit/cluster" linking)

Misure di posizione <u>spaziale</u>

Per ottenere in maniera semplice un punto spaziale ci sono due strade:

 \rightarrow microstrip (Y × O(10-50)×300µm³)

⇒incrociando due vedute (Y≈ 5000µm)

 \rightarrow double sided (Y \approx 500 μ m)

🖛 pixel

 \rightarrow CCD (Charge Coupled Device) (20×20×20 μ m³)

- \rightarrow APD (Active Pixel Device) (150×150×250 μ m³)
- Ci sono anche altri *rivelatori* interessanti:
 - → silicon drift chambers
 - \mapsto controlled drift detectors
 - Non tutti questi rivelatori hanno avuto grande successo a causa della situazione nella quale devono operare negli esperimenti HE
 - → Rivelatori 3D

Active Pixel Device (APD) I

- ✓ In questo caso il diodo è scomposto in tasselli, ciascuno
 → letto invididualmente (approccio forza bruta) da elettronica che si trova sopra al rivelatore
- È chiaro che un ruolo fondamentale lo ha avuto il ridursi delle dimensioni dei transistor
- Cosa vuol dire sopra?

→ fisicamente separata ma elettricamente connessa

→ hybrid detector

- Rivelatori *ibridi* utilizzati ad ATLAS e CMS
 - → superate una serie di difficoltà tecniche
 → enormi quantità di *bump bonding* (riprocessing)
 → abbisognano di raffreddamento (che introduce una quantità non trascurabile di materiale)

Active Pixel Device (APD) II

Punti a favore:

- → Estremamente robusti alla radiazione
 - →ci si aspetta sopravvivano in una zona di LHC (a pochi cm dal fascio) ove neppure i rivelatori a microstrip si avventurano:
 →dosi dell'ordine di 10³ kGy a circa 4 cm dal fascio
- → Estremamente veloci
 - →c'è un accesso in parallelo ai segnali
- → La risoluzione spaziale è ottima
- → Assumono un ruolo fondamentale nel pattern recognition
- Problemi (aggiuntivi)
 - → MAPS: area attiva coperta (tipicamente ~50%)
 - →inaccettabile in applicazioni di tracciatura

Guardiamo un rivelatore a pixel per il rivelatore CMS ad LHC:

La granularità dei rivelatori è dettata dallo spazio richiesto all'elettronica di readout chip lettura.

L'affidabilità del meccanismi di saldatura a freddo deve essere estrema

sensor

180 µm

chip pixel unit cell

solder bump

APD III

- A parte che in HEP (LHC, esperimenti a bersaglio fisso)

- Applicazioni di:

- \mapsto imaging in ambito biomedico
- Applicazioni nelle quali la resistenza alla radiazione sia necessaria

Applicazione medica: Medipix 4096 channels

Rivelatori MAPS

 Recenti sviluppi sui rivelatori dove l'elettronica è integrata sul silicio ad alta resistività

- → Ad esempio NIM A518 (2004), 354-356: phototransistor.
 - →La struttura del transistor è costruita direttamente su silicio ad alta resistività, sensibile a luce visibile (superficie) ed X-ray coppie nel bulk)

Problemi

 Accenneremo qui ad alcuni problemi fondamentali nelle operazioni dei rivelatori a semiconduttore:

\mapsto Il danno da radiazione

- →Esposizione diretta ai fasci o a prodotti di collisioni (esperimenti agli acceleratori)
- →Esposizione prolungata a flussi di raggi cosmici non schermati dall'atmosfera (rivelatori su satelliti)
- →Utilizzo in vicinanza di sorgenti estremamente attive (es: centrali nucleari etc)

→ Le sorprese inattese (ed in genere non benvenute)

→Problemi nelle operazioni

Riv.al silicio: danno da radiazione

principalmente due fenomeni:

- danneggiamento superficie
 - → generato dalla creazione di coppie *e-h* nell'ossido. Le lacune sono lente e vengono facilmente intrappolate. C'e' quindi:
 - →accumulo di cariche all'interfaccia Si-SiO₂ con conseguente creazione di fenomeni di correnti di superficie, fenomeni di punch-through etc.
 - → Sterminata bibliografia e studi
- 🖛 danni nel bulk
 - → danno nel *bulk* dovuto a particelle che creano difetti reticolari nella regione attiva espellendo atomi di silicio dalla loro localizzazione nel cristallo. Tipicamente ciò succede con trasferimenti energetici dell'ordine di 30÷40KeV, nel qual caso l'atomo che rincula ha un range di circa 10nm e crea, a sua volta, una certa quantità di difetti lungo il suo percorso (NIEL, <u>N</u>on <u>I</u>onizing <u>E</u>nergy Losses)

Difetti microscopici

Damage to the silicon crystal: Displacement of lattice atoms

Defects can be electrically active (levels in the band gap)

- capture and release electrons and holes from conduction and valence band
- \Rightarrow can be charged can be generation/recombination centers can be trapping centers

Danno Microscopico indotto da radiazione Frenkel pair vacancy + Interstitial $E_{K} > 25 \text{ eV}$ Point Defects (V-V, V-O..) E_K > 5 keV clusters

Influence of defects on the material and device properties

Riv.al silicio: danno da radiazione II

danneggiamento del bulk (primi studi):

- → difetti assumono il ruolo di centri di generazione-ricombinazione, il loro aumento porta ad un aumento della corrente di leakage: I(Φ)=I₀+αΦ dove I₀ è la corrente di leakage prima dell'irraggiamento (flusso Φ) ed α è una costante di proporzionalità che vale 0.3÷2.7 10⁷ nA/cm. Spesso utilizzato il valore 3.
- → Per ridurre la corrente una prima risposta è raffreddare il silicio: I(T)≅T² · exp(-Eg /(2 · k_B · T))

$$\alpha = \frac{\Delta I}{V \cdot \Phi_{eq}}$$

Abbassare la temperatura implica l'uso di sistemi di raffreddamento

→materiale all'interno del volume di tracciatura.

Riv.al silicio: danno da radiazione II

- Negli ultimi 10-15 anni si è visto che all'aumentare del flusso integrato diminuisce la concentrazione effettiva:
- → N_{eff}(Φ)=N₀e^{-cΦ}-βΦ quest'equazione implica che la concentrazione di dopante diminuisca e, per flussi integrati dell'ordine di 10¹³cm⁻² il bulk del silicio venga trasformato da un tipo (n) all'altro.
 - →studi in corso, in prospettiva, grazie al *defects engineering* ci si aspetta di essere in grado di estendere la resistenza del Silicio

In un collider adronico (CDF Run I):

 $\Phi = \Phi_0/r^{1.7}$

Una prima risposta è di avere rivelatori in grado di sostenere V_{bias} elevati

Inversione...

Che succede dopo l'inversione ?

- \rightarrow un silicio di tipo *n* è diventato drogato p
- → la giunzione è dal lato opposto a quello dal quale avevamo iniziato
- → la tensione di svuotamento aumenta progressivamente

Inversione II

Dopo l'inversione

- \rightarrow un silicio di tipo *n* è diventato drogato p
- → la giunzione e' dal lato opposto a quello dal quale avevamo iniziato
- → la tensione di svuotamento aumenta progressivamente
- che implicazioni ci sono per i varii tipi di rivelatore?
 - → per i rivelatori singola faccia, tipicamente bisogna controllare il campo elettrico perchè non ci siano effetti di (micro)breakdown
 - → per i rivelatori doppia faccia la situazione è più complicata
 → ricordiamoci che il campo elettrico è massimo alla giunzione
 - → dovendo applicare un grande V_{bias}, ci saranno dei condensatori di disaccoppiamento dove la differenza di potenziale tra il lato connesso all'elettronica di readout (a ground virtuale, tipicamente pochi volts) e il lato dell'impianto, settato a V_{bias}, sarà molto grande con pericolo di rottura dei condensatori stessi. In questo caso spesso V_{bias}viene applicato in *splitting* (simmetrico o asimmetrico tra i due lati) in modo da ridurre questa d.di p.

Danno da Radiazione - Trapping

Deteriorarsi della Charge Collection Efficiency (CCE) a causa della presenza di centri di trapping

Trapping è caratterizzato da un "effective trapping time" τ_{eff} per elettroni e buche:

$$Q_{e,h}(t) = Q_{0e,h} \exp\left(-\frac{1}{\tau_{eff\ e,h}} \cdot t\right) \quad \text{where} \quad \frac{1}{\tau_{eff\ e,h}} \propto N_{defects}$$

Increase of inverse trapping time $(1/\tau)$ with fluence and change with time (annealing):

Impatto sui rivelatori: decremento del CCE

- perdita di segnale ed incremento rumore -
- Due meccanismi basilari riducono la raccolta di carica:
 - → trapping di elettroni e buche →(dipende dal tempo di drift e dallo shaping time)
 - → Sotto-svuotamento →(dipende dal disegno del rivelatore e dalla geometria)
- Esempio: ATLAS microstrip detectors + fast electronics (25ns)
- p-in-n : oxygenated vs. standard FZ
 beta source
 20% charge loss after 5x10¹⁴ p/cm² (23 GeV)

- 🖛 n-in-n vs p-in-n
 - same material, ~ same fluence
 over-depletion needed

Rivelatori a seminconduttore in HEP

- 🖛 Due gli usi
 - → Rivelatore di vertice
 - → I primi costruiti, e gran parte degli utilizzi fino ad oggi
 - → Sistemi di tracciatura
 - → Si espande il ruolo, stanno prendendo sopravvento
- Due configurazioni diverse, diversi i problemi
- Rivelatori di vertice:
 - → Utilizzati per ricostruire vertici generati da particelle con vita media dell'ordine dei picosecondi
 - → Aggiungere pochi punti, estremamente precisi, a tracce i cui parametri sono misurati da un tracciatore diverso (spesso a gas)
 - → Importante minimizzare il Mult.scatt. e posizionare i rivelatori il più possibile vicini al punto di interazione

Il caso concreto

- Vediamo insieme un caso concreto.
- Il sistema di silici di CDF-II è stato in operazione per dieci anni, e quindi fornisce un utile "case study" per discutere sia del danno da radiazione che di problemi di operazioni
- Parleremo quindi di "operation" di un rivelatore che funziona dal 2001
 - → Caso unico e che puo' insegnare molto per il futuro

CDF Silicon Tracking System

- Sistema composto da tre diversi rivelatori
 - → L00
 - └→ SVXII
 - ⊢ ISL
- LOO è l'ultimo arrivato (aggiunto), rivelatore singola faccia rad-hard
- SVXII è stato il primo:
 - → 5 strati doppia faccia (2 r-z stereo e 3 con strip a 90°)
- ISL e' il primo tracciatore a grande raggio:
 - → 2 strati doppia faccia per
 2<|η|<1 ed 1 nella zona centrale

È un sistema misto

Un rivelatore a microstrip:SVX = LOO+SVXII+ISL

74

- SVXII e' il nome dato al rivelatore di vertice costruito in vista del Run II del Tevatron
 - \rightarrow E' il terzo minivertice costruito
 - →SVX, DC coupled, 4 strati SS, "Evidence for top"
 - →SVX', AC coupled, 4 strati SS,"Top discovery"
 - → Progettazione partita nei primi anni '90
 - →sopravvivere a 2fb⁻¹ (circa 1 MRad, strato piu' interno)
 - →5 strati, doppia faccia (punti spaziali)
 - →estendere le capacità di *b-tagging* dell'esperimento alla zona in avanti (|η|>2) (2.44 cm < R < 10.6cm)
 - → poter essere utilizzata in un trigger alla ricerca di tracce con grande parametro d'impatto
- Nel 1996 aggiunti due strati a R=20, 28 cm (ISL) e poi (1999) uno strato rad-hard S.S. ad R=2 cm (LOO)
 ¬> sistema integrato di 7÷8 punti spaziali
 ¬> tracciatore

SVXII

Main CDF silicon vertex detector → ISL, LOO are improvements to SVX II

- \hookrightarrow Sensors are DS:
 - \rightarrow 3 x 90° layers + 2 x SAS layers
 - $ightarrow
 m R-\phi$ pitch ~ 60 μ m,
 - R-z~60 140 µm (SVXII)

SVX II Parameters			
Number of Barrels	3		
Active length per barrel	29 cm		
Number of layers	5		
Readout coordinates per layer	Φ +z $\setminus \Phi$ + Φ ,		
Radius of inner and outer layers	2.45 cm, 10.6 cm		
Ladders per barrel-layer = Φ sectors	12		
Each 1/2 ladder is one electrical unit of l	14.5 cm		
Total number of electrical Φ sector wedge	72		
Readout channels: Φ	211.968		
Readout channels: z	193.536		
Total	405.504		

ISL

e rapidità ($|\eta| \sim 2$)

Sensori:

- doppia faccia tutti con angolo stereo a piccolo angolo
- 112 μm pitch
- Supporto
 - struttura in fibra di carbonio a basso peso ed alta rigidità

L00

- Rivelatore più interno di CDF:

- → Migliora la risoluzione in parametro d'impatto a basso p_T
- → Sensori connessi ai chips da cavi di Kapton (fino a 40 cm) per evitare materiale nella regione di tracciatura
- └→ Sensori:
 - \hookrightarrow Single sided accoppiati in AC
 - $ightarrow 25 \ \mu m$ pitch, 50 μm readout
 - \hookrightarrow Struttura rad-hard (V_{max}~500 V)
 - →128 o 256 canali di lettura/sensore
 - **→usati 144 sensori**
 - →Sensori raffredati a 0 °C per ridurre gli effetti della radiazione

Silicon summary

CDF	Layer 00	SVX II	ISL	Totals
Layers	1	5	2	8
Length	0.9 m	0.9 m	1.9 m	
Channels	13824	405504	303104	722432
Modules	48 SS	360 DS	296 DS	704
Readout Length	14.8 cm	14.5 cm	21.5 cm	
Inner Radius	1.35 cm	2.5 cm	20 cm	1.35 cm
Outer Radius	1.65 cm	10.6 cm	28 cm	28 cm
Power	~100 W	1.4 kW	1.0 kW	2.5 kW

COT-Si "Outside-In" tracking

With the state of the state of

COT seeded tracking "Progressive Road search"

Requirement	Efficiency	Requirement	Efficiency
$N_{r\phi} \geq 3$	94%	$N_z \ge 3$	80%
$N_{r\phi} \ge 4$	90%	$N_z \ge 4$	61%
$N_{r\varphi}=5$	46%	$N_z = 5$	26%

SVX is aligned in $r - \Phi$

Danno da radiazione al silicio

 Esempio: vita media del rivelatore di CDF, tabella costruita a partire dalle misure del Run I:

Layer	safe fb ⁻¹	cause	
0 (55)	7.4	Vdep	
1 (DS)	4.3(5.6)	S/N(Vdep)	
2 (DS)	8.5(10.9)	S/N(Vdep)	
3 (DS)	10.7	Vdep	
4 (DS)	23(30)	S/N(Vdep)	
5(DS)	14	Vdep	
6(DS)	>40	n/a	
7(DS)	> 40	n/a	

Run I data: $r^{-\alpha}$, α =1.7

Run 2 data: $r^{-\alpha}$, consistent with expectations

Circa 2002-2003

Misura della Radiazione Assorbita

- Periodo maggioottrobre 2001
- Ancora molte perdite di fascio
- Misure per verificare andamento e totale dose
- Fit della dipendenza radiale con $1/R^{\alpha}$
- Resultato: $\underline{\alpha(z)=1.5-2.0}$
- Run IIa aspettativa di vita per il silicio fatta con

 $\alpha = 1.7 \pm 30\%$ (OK)

Radiation Field

- Measured using more than 1000 thermo-luminescent dosimeters (TLDs)
- > Two different data-taking periods allowed for distinction between fields:

(See R. J. Tesarek et al., IEEE NSS 2003)

► Radiation field is collision-dominated and scales with $r^{-\alpha(z)}$, with $1.5 < \alpha(z) < 2.1$ How this field affects the silicon sensors ?

82

Depletion Voltage: Signal Vs Bias

Problemi dovuti al danno da radiazione

- Ricordiamoci che -operativamente- due possono essere i motivi per i quali il danno da radiazione può impedire l'utilizzo di sensori al silicio:
 - → Tensione di svuotamento troppo alta
 - →Breakdown o rottura dei condensatori di (dis)accoppiamento
 - → Il rumore aumenta ad un livello in cui il rapporto S/N impedisce l'utilizzo sia per pattern recognition che per "hit linking"

Depletion Voltage: Noise Vs Bias

 Take advantage of double sided sensors, that have strips on the back side

Relative Bias Voltage (V)

Need a criteria for defining V_d

 \rightarrow We use 95% reduction in noise between the two plateaus

- No beam required
 - \rightarrow no interference with data-taking
- Does not work after the sensor underwent inversion.
 - → Depletion zone generated differently

Alternative Method: Noise vs Bias Scan

- In double sided silicon sensors, noise exhibits a dip as a function of bias voltage as p-stops separate at ~at V_{dep}
 - ⇒ Track V_{dep} as a function of luminosity and determine rate of change dV/dL
- Method does not require beam time
- Can't be used for LOO (single-sided)
- Won't work after type inversion.

Alcuni risultati

Ricetta:

→ Variare il Vbias sui rivelatori

 A CDF disponibile l'andamento della tensione di svuotamento con degli scan dedicati

Risultati: voltaggio di svuotamento

- Predizione per LOO
 - → Dipende dal tipo di sensore
 - → Ladder ossigenate invertono molto più tardi
- Predizione per SVX-LO
 - → Dipende dal tipo di sensore
 - → Ladder ossigenate invertono molto più tardi

Saremo in grado di svuotare i rivelatori fino alla fine del Run II

Il Run 2 sta per finire

Saremo in grado di far funzionare tutti i rivelatori

Rapporto segnale su rumore

- The figure of merit of the performance is the Signal to Noise Ratio (S/N)
 - → <u>Signal</u>: charge collected when a charged particle crossed the sensor
 - → <u>Noise</u>: intrinsic noise of the determent of the determined of the dete
- Signal
 - \rightarrow Use J/ $\psi \rightarrow \mu^+\mu^-$ tracks
 - \hookrightarrow Get total charge of cluster
 - → Decrease linearly with Lum.

- → Average over strips in charge cluster
- → Obtained from calibrations taken every two week.
- \rightarrow Square root increase with

Signal to Noise Ratio

Monitoring the depletion voltage is a key aspect to predict how long the CDF silicon detector will last.

Most of the silicon layers will be fully operational until the end of Run II

Cosa è successo?

Figure 27: Signal-to-noise ratio for L00 and both sides of SVX-II. Extrapolations (solid lines) of the S/N ratio for integrated luminosities up to 10 fb^{-1} are also shown.

S/N	6.3	6.1	8.5	7.0	11.1	8.9
Error	± 0.5	± 0.2	± 0.5	± 0.3	± 0.4	± 1.0
z side						
S/N	Ø	5.6	7.3	10.8	9.8	11.1
Error	Ø	± 0.1	± 0.2	± 0.2	± 0.2	± 0.9

Table 3: Extrapolated values of the signal-to-noise ratio at an integrated luminosity of 10 fb⁻¹ for L00 and each layer of SVX-II.

Problemi operativi

- Far funzionare un rivelatore così complesso comporta dei problemi operativi (talvolta inattesi)
 - → SEU
 - → Perdita (semi) disastrosa del fascio
 - → Problemi di rumore
 - → Resistenza alla radiazione di tutte le componenti
 - → Failure mode imprevisto(i)

- Invecchiamento di alcune componenti
 - → Sistema di raffreddamento
- In generale sistema disegnato per durare pochi anni ed integrare 2fb⁻¹, funzionera per 8-9 anni fino a 6-8 fb⁻¹

Operational Issues

During commissioning:

- Blocked Cooling lines
 - → Blocked by glue, well inside the detector
 - → <u>Solution</u>: open them up with a powerful laser

Resonances

- \mapsto Wire bonds \perp to the magnetic field
- \mapsto Synch. Readout \rightarrow wire oscillate and break
- → <u>Solution</u>: Stop high frequency synchronous readouted by the synchronou

Beam Incidents

- → High dose accidentally delivered to the detector
- \rightarrow <u>Solution</u>:
 - → Collimators in key parts of the Tevatron
 - → New Diamond based BLM system.

After commissioning: Infrastructure & Aging

Infrastructure & Aging: Power Supplies ⁹⁵

- Common failure modes of CAEN SY527
 - $\hookrightarrow \textit{Communication loss}$
 - → Corrupted read back of voltages/currents
 - → Spontaneous switch off
- Failure mode of power supply modules:
 - → Voltages in Analog, Digital and Port-Card
 > So supply start slowly dropping.
 - → Up to 47 Power supplies started to show this.

Problem:

- \mapsto aging of one type of capacitor
- → 36 capacitors per power supply
- \mapsto Can result in bit errors

- Solution:
 - S Wait for the shutdown of September 2007 and ...
 - take all faulty power supplies out
 - replace all 36 capacitors (on FNAL site)
 - put them back in and test them on location.
 - Time intensive effort, lasted about 2 months.
 - Not enough time to change all
 - Still expect to replace others as failure appears

All power supplies with this failure were replaced!

Infrastructure & Aging: Cooling Lines ⁹⁷ Repair Started shutdown of 2007:

- → Keep the silicon cold and dry at all times
- \rightarrow A plastic tent was setup to work.
 - \rightarrow A custom made air dryer changed the volume every
 - 2 minutes.
 - →Dew Point was always ke
- → Basic Idea: →Cover holes with epoxy <u>the inside of the pipe</u> →using borescopes and ca

Feb 29th, 2008 4 shifts of Beoble

Rotture delle microsaldature

- Perdita di potenza sulla parte digitale di 13/360 lati Z di SVXII
- Ipotesi: sforzo da forza di Lorentz
 - \rightarrow Saldatura *I* ortogonale a **B**
 - \mapsto $I \propto$ occupancy

 - → <u>Test convincenti</u>

→filmato

- → Cambiati i settings operativi
- └→ Ora funziona
- Si continua a monitorare il problema

Final Confirmation

- Using actual spare SVXII ladders and real CDF DAQ and real power supplies
 - → Configured DAQ to readout silicon with a definite frequency
 - → Scanned these frequencies, looking for resonances
 - → After several days of testing ... DVDD jumper bond broke!
- Fix:
 - → Use DAQ to detect resonance and abort
 - → Now happily running at 25KHZ (and more)

Wirebond Resonance Mitigation

- A synchronous trigger condition detector is now operational in CDF to avoid wire bond resonances
 - → Performs FFT analysis of of L1 trigger rates
 - → Halts DAQ via SRC
 - → Based on SVT ghostbuster board
 - → DAQ code analyzes possible cause of synch. trigger conditions.
- System has been thoroughly tested currently being migrated from prototype board to full 8 channel system
- Currently running successfully @ 25 kHz L1A rate.

Ospiti inattesi

Nel LOO problemi di rumore

- → I chip di FE sono stati montati lontani (connessi con cavi al rivelatore) e il pick up ha assunto le caratteristiche di noise coerente
 - →Niente DPS, niente sparsified readout
 - → Tempi di lettura lunghi, impossibilità ad essere usati online

Nel LOO problemi di radiation hardness

- \rightarrow Non del rivelatore
- → Ma dei power supplies (utilizzo di un componente rad-soft non esplicitamente citato nelle specifiche)

Conclusioni

- L'uso dei rivelatori a semiconduttore ha aperto nuovi settori di fisica
 - → Percorso complesso e faticoso, lunga R&D
- 🖛 Sono dei rivelatori oramai maturi
 - \mapsto Expertise diffusa grazie anche ad LHC
- È il momento di inventarsi nuove strade (anche dal punto di vista degli utilizzi)
- L'intrinseca semplicità non deve far perdere di vista problemi operativi e sottigliezze di disegno che possono compromettere il loro funzionamento