UNIVERSITÀ DEGLI STUDI DI PISA INGEGNERIA CHIMICA: CORSO DI FISICA GENERALE II Prova n. 1 - 27/10/2018

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Un sottile anello circolare di raggio $r_0=2.52$ m è uniformemente carico con densità lineare di carica uniforme e carica complessiva Q=1.66 nC . Determinare il modulo della velocità iniziale minima, in m/s, che deve avere una particella di massa $m=1.0\times 10^{-9}$ kg e carica elettrica q=1 nC che si trova in un punto dell'asse dell'anello alla distanza d=1.57 m dal centro dell'anello per raggiungere il centro dell'anello.

 $A \boxed{0}$ $B \boxed{1.34}$ $C \boxed{3.14}$ $D \boxed{4.94}$ $E \boxed{6.74}$ $F \boxed{8.54}$

2) In un sistema di riferimento cartesiano, è dato un supporto filiforme coincidente con il semiasse positivo delle y, raccordato all'estremo che si trova nell'origine del sistema di riferimento con un tratto filiforme a forma di un quarto di circonferenza, anch'esso giacente nel piano xy, con il centro che si trova in un punto A sul semiasse positivo delle x e raggio $r_0 = 1.01$ m. Su questo supporto è distribuita una carica elettrica con densità lineare uniforme $\lambda = 1.15$ nC/m. Determinare il modulo del campo elettrico, in NC⁻¹, nel punto A.

A 0 B 20.5 C 38.5 D 56.5 E 74.5 F 92.5

3) All'interno di un lungo cilindro retto a base circolare e raggio $r_0 = 3.98$ m, uniformemente carico con una densità volumetrica di carica elettrica uniforme $\rho = 1.54$ nC/m³, è praticata, lungo tutta la sua lunghezza, una cavità cilindrica con asse parallelo a quello del cilindro carico. La distanza tra gli assi è pari a d = 1.72 m. La cavità cilindrica è vuota. Determinare l'intensità del campo elettrico, in NC⁻¹ in un punto interno alla cavità.

A 0 B 150 C 330 D 510 E 690 F 870

4) In un sistema di coordinate polari sferiche, è dato il seguente campo elettrostatico: $\vec{E} = a \frac{e^{-br}}{r^2} \hat{r}$, con $a = 1.88 \text{ NC}^{-1}$ e $b = 1.36 \text{ m}^{-1}$. Determinare la carica elettrica, in coulomb, presente in tutto lo spazio.

A 0 B 196 C 376 D 556 E 736 F 916

5) Su tre vertici di un tetraedro regolare di spigolo di lunghezza $a = 20.1 \times 10^{-3}$ m è presente una carica elettrica puntiforme q = 1.93 pC. Determinare il modulo del campo elettrico, in NC⁻¹, nel quarto vertice.

A 0 B 105 C 285 D 465 E 645 F 825

6) Si consideri il seguente campo elettrostatico, dato in coordinate cilindriche: $E_{\rho}=k\rho/(\rho^2+z^2)^{3/2}$, $E_{\phi}=0$, $E_z=2h+kz/(\rho^2+z^2)^{3/2}$, dove h=1.50 V/m, k=1.70 V·m. Determinare la carica elettrica, in nC, presente nell'origine delle coordinate.

A $\boxed{0}$ B $\boxed{0.189}$ C $\boxed{0.369}$ D $\boxed{0.549}$ E $\boxed{0.729}$ F $\boxed{0.909}$

7) Fissati un sistema di coordinate cartesiane e un corrispondente sistema di coordinate cilindriche, nel punto di coordinate cartesiane (1,1,1) è dato il vettore $\mathbf{v}=(v_x,\,v_y,\,v_z)$ con componenti cartesiane $v_x=1.02,\,v_y=1.97,\,v_z=1.11$. Determinare la componente radiale v_ρ del vettore \mathbf{v} .

A 0 B 2.11 C 3.91 D 5.71 E 7.51 F 9.31

8) In un sistema di coordinate polari sferico, nella regione individuata dalle relazioni $r \le 1.28 \text{ m}$, $0 \le \theta \le \pi$, e $0 \le \phi \le \frac{\pi}{2}$, è data una distribuzione volumetrica con densità uniforme $\rho_0 = 1.89 \text{ nC/m}^3$. Calcolare il modulo del campo elettrico, in NC⁻¹, nell'origine del sistema di riferimento.

A 0 B 12.3 C 30.3 D 48.3 E 66.3 F 84.3

9) Una distribuzione lineare di carica elettrica ha la forma di un segmento di lunghezza $a=1.41\times10^{-3}$ m. La densità di carica è uniforme lungo il segmento e vale $\rho_0=1.97$ nC/m. Determinare il modulo del campo elettrico, in V/m, in un punto giacente sulla stessa retta del segmento e a distanza a dal suo estremo più vicino.

A $\boxed{0}$ B $\boxed{2.68 \times 10^3}$ C $\boxed{4.48 \times 10^3}$ D $\boxed{6.28 \times 10^3}$ E $\boxed{8.08 \times 10^3}$ F $\boxed{9.88 \times 10^3}$

10) Si consideri il punto P di coordinate cilindriche $\rho = 1.21$ m, $\phi = 1.44$ rad, z = 1.12 m. Nel punto P determinare la proiezione del versore u_{ρ} delle linee coordinate ρ sul versore u_{θ} delle linee coordinate θ .

 $A \boxed{0} B \boxed{0.250} C \boxed{0.430} D \boxed{0.610} E \boxed{0.790} F \boxed{0.970}$

Testo n. 0