Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.52 nC, si muove con velocità | \vec{v} |= 1.66×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- $A \boxed{0} \quad B \boxed{217} \quad C \boxed{397} \quad D \boxed{577} \quad E \boxed{757} \quad F \boxed{937}$
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.14 cm. In ciascun filo circola nello stesso verso una corrente I=1.01 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.2 cm e b=0.598 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=55.4 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.72$ ampere e $I_b=1.88$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0232 \end{bmatrix} \quad C \begin{bmatrix} 0.0412 \end{bmatrix} \quad D \begin{bmatrix} 0.0592 \end{bmatrix} \quad E \begin{bmatrix} 0.0772 \end{bmatrix} \quad F \begin{bmatrix} 0.0952 \end{bmatrix}$
- 4) Una lamina metallica di forma cilindrica ha raggio r=11.8 mm, spessore $\delta=0.501$ mm (si noti $\delta << r$) e altezza h=209 mm (si noti r << h). Sia $\sigma=1.50\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.70$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.110 \end{bmatrix} \quad C \begin{bmatrix} 0.290 \end{bmatrix} \quad D \begin{bmatrix} 0.470 \end{bmatrix} \quad E \begin{bmatrix} 0.650 \end{bmatrix} \quad F \begin{bmatrix} 0.830 \end{bmatrix}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.02 cm e massa m=1.97 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.11 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.28 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.89$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- $A \boxed{0} \quad B \boxed{0.225} \quad C \boxed{0.405} \quad D \boxed{0.585} \quad E \boxed{0.765} \quad F \boxed{0.945}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.4 cm, raggio r=1.97 cm (si noti r<< h), spessore d=0.121 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.44\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.112$ tesla e $\tau=1.92$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 124 C 304 D 484 E 664 F 844

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{1.03 \times 10^{-3}} \quad C \ \boxed{2.83 \times 10^{-3}} \quad D \ \boxed{4.63 \times 10^{-3}} \quad E \ \boxed{6.43 \times 10^{-3}} \quad F \ \boxed{8.23 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.112$ m, sulla cui superficie è depositata una carica $Q = 1.69~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.62 \times 10^3 \text{ rad/s}$.

A 0 B 10.3 C 28.3 D 46.3 E 64.3 F 82.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.68 cm e b=1.73 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.78 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.43$ tesla, $B_y=1.06$ tesla e $B_z=1.35$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 154 C 334 D 514 E 694 F 874

10) Una spira quadrata di lato a = 0.0144 m è percorsa da una corrente stazionaria I = 0.121 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.97 nC, si muove con velocità | \vec{v} |= 2.85×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

 $A \boxed{0} \quad B \boxed{157} \quad C \boxed{337} \quad D \boxed{517} \quad E \boxed{697} \quad F \boxed{877}$

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.42 cm. In ciascun filo circola nello stesso verso una corrente I=1.69 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.145}$ C $\boxed{0.325}$ D $\boxed{0.505}$ E $\boxed{0.685}$ F $\boxed{0.865}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a = 10.9 cm e b = 0.514 cm, (si noti b << a) sono disposte coassialmente ad una distanza h = 58.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a = 1.64$ ampere e $I_b = 1.17$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \boxed{0} B \boxed{0.0164} C \boxed{0.0344} D \boxed{0.0524} E \boxed{0.0704} F \boxed{0.0884}$

4) Una lamina metallica di forma cilindrica ha raggio r = 14.1 mm, spessore $\delta = 0.575$ mm (si noti $\delta << r$) e altezza h = 204 mm (si noti r << h). Sia $\sigma = 1.71 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.16$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A $\boxed{0}$ B $\boxed{0.122}$ C $\boxed{0.302}$ D $\boxed{0.482}$ E $\boxed{0.662}$ F $\boxed{0.842}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.42 cm e massa m=1.92 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.60 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.54 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.84$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.200} \quad C \boxed{0.380} \quad D \boxed{0.560} \quad E \boxed{0.740} \quad F \boxed{0.920}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.7 cm, raggio r=1.23 cm (si noti r<< h), spessore d=0.146 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.40\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.196$ tesla e $\tau=1.24$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 141 C 321 D 501 E 681 F 861

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{1.99 \times 10^{-3}} \quad C \ \boxed{3.79 \times 10^{-3}} \quad D \ \boxed{5.59 \times 10^{-3}} \quad E \ \boxed{7.39 \times 10^{-3}} \quad F \ \boxed{9.19 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.183$ m, sulla cui superficie è depositata una carica $Q = 1.02~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.59 \times 10^3 \text{ rad/s}$.

A 0 B 16.3 C 34.3 D 52.3 E 70.3 F 88.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.28 cm e b=1.23 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.92 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.26$ tesla, $B_y=1.15$ tesla e $B_z=1.13$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 275 C 455 D 635 E 815 F 995

10) Una spira quadrata di lato a = 0.0161 m è percorsa da una corrente stazionaria I = 0.110 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A 0 B 0.0233 C 0.0413 D 0.0593 E 0.0773 F 0.0953

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.92 nC, si muove con velocità | \vec{v} |= 2.48×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 161 C 341 D 521 E 701 F 881

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.88 cm. In ciascun filo circola nello stesso verso una corrente I=1.56 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.172}$ C $\boxed{0.352}$ D $\boxed{0.532}$ E $\boxed{0.712}$ F $\boxed{0.892}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.5 cm e b=0.589 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=59.9 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.65$ ampere e $I_b=1.30$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0256 \end{bmatrix} \quad C \begin{bmatrix} 0.0436 \end{bmatrix} \quad D \begin{bmatrix} 0.0616 \end{bmatrix} \quad E \begin{bmatrix} 0.0796 \end{bmatrix} \quad F \begin{bmatrix} 0.0976 \end{bmatrix}$

4) Una lamina metallica di forma cilindrica ha raggio r=14.6 mm, spessore $\delta=0.525$ mm (si noti $\delta << r$) e altezza h=208 mm (si noti r << h). Sia $\sigma=1.75\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.98$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.

A $\boxed{0}$ B $\boxed{2.59}$ C $\boxed{4.39}$ D $\boxed{6.19}$ E $\boxed{7.99}$ F $\boxed{9.79}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.07 cm e massa m=1.21 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.38 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.03 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.45$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.185 \end{bmatrix} \quad C \begin{bmatrix} 0.365 \end{bmatrix} \quad D \begin{bmatrix} 0.545 \end{bmatrix} \quad E \begin{bmatrix} 0.725 \end{bmatrix} \quad F \begin{bmatrix} 0.905 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.2 cm, raggio r=1.05 cm (si noti r<< h), spessore d=0.104 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.49\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.127$ tesla e $\tau=1.96$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 186 C 366 D 546 E 726 F 906

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{2.44 \times 10^{-3}} \quad C \ \boxed{4.24 \times 10^{-3}} \quad D \ \boxed{6.04 \times 10^{-3}} \quad E \ \boxed{7.84 \times 10^{-3}} \quad F \ \boxed{9.64 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.175$ m, sulla cui superficie è depositata una carica $Q = 1.43~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.09 \times 10^3 \text{ rad/s}$.

A 0 B 14.3 C 32.3 D 50.3 E 68.3 F 86.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.36 cm e b=1.52 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.36 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.81$ tesla, $B_y=1.26$ tesla e $B_z=1.81$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 153 C 333 D 513 E 693 F 873

10) Una spira quadrata di lato a=0.0109 m è percorsa da una corrente stazionaria I=0.175 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.182 \end{bmatrix} \quad C \begin{bmatrix} 0.362 \end{bmatrix} \quad D \begin{bmatrix} 0.542 \end{bmatrix} \quad E \begin{bmatrix} 0.722 \end{bmatrix} \quad F \begin{bmatrix} 0.902 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.17 nC, si muove con velocità | \vec{v} |= 1.81×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 135 C 315 D 495 E 675 F 855

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.99 cm. In ciascun filo circola nello stesso verso una corrente I=1.01 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.143}$ C $\boxed{0.323}$ D $\boxed{0.503}$ E $\boxed{0.683}$ F $\boxed{0.863}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a = 10.7 cm e b = 0.584 cm, (si noti b << a) sono disposte coassialmente ad una distanza h = 57.6 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a = 1.63$ ampere e $I_b = 1.91$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \boxed{0} B \boxed{0.0192} C \boxed{0.0372} D \boxed{0.0552} E \boxed{0.0732} F \boxed{0.0912}$

4) Una lamina metallica di forma cilindrica ha raggio r=14.8 mm, spessore $\delta=0.500$ mm (si noti $\delta << r$) e altezza h=209 mm (si noti r<< h). Sia $\sigma=1.42\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.22$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.

 $A \boxed{0} B \boxed{0.256} C \boxed{0.436} D \boxed{0.616} E \boxed{0.796} F \boxed{0.976}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.98 cm e massa m=1.45 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.70 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.25 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.41$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.165} \quad C \boxed{0.345} \quad D \boxed{0.525} \quad E \boxed{0.705} \quad F \boxed{0.885}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.4 cm, raggio r=1.68 cm (si noti r<< h), spessore d=0.150 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.81\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.120$ tesla e $\tau=1.86$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 181 C 361 D 541 E 721 F 901

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{1.40 \times 10^{-3}} \quad C \ \boxed{3.20 \times 10^{-3}} \quad D \ \boxed{5.00 \times 10^{-3}} \quad E \ \boxed{6.80 \times 10^{-3}} \quad F \ \boxed{8.60 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.162$ m, sulla cui superficie è depositata una carica $Q = 1.47 \ \mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.67 \times 10^3 \ \text{rad/s}$.

A 0 B 19.3 C 37.3 D 55.3 E 73.3 F 91.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.71 cm e b=1.22 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.36 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.80$ tesla, $B_y=1.62$ tesla e $B_z=1.36$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 195 C 375 D 555 E 735 F 915

10) Una spira quadrata di lato a = 0.0180 m è percorsa da una corrente stazionaria I = 0.128 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.12 nC, si muove con velocità | \vec{v} |= 2.81×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 112 C 292 D 472 E 652 F 832

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.20 cm. In ciascun filo circola nello stesso verso una corrente I=2.06 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A 0 B 0.188 C 0.368 D 0.548 E 0.728 F 0.908

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.9 cm e b=0.503 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=59.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.12$ ampere e $I_b=1.01$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0271}$ C $\boxed{0.0451}$ D $\boxed{0.0631}$ E $\boxed{0.0811}$ F $\boxed{0.0991}$

4) Una lamina metallica di forma cilindrica ha raggio r = 12.0 mm, spessore $\delta = 0.583$ mm (si noti $\delta << r$) e altezza h = 203 mm (si noti r << h). Sia $\sigma = 1.81 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.28$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A $\boxed{0}$ B $\boxed{0.135}$ C $\boxed{0.315}$ D $\boxed{0.495}$ E $\boxed{0.675}$ F $\boxed{0.855}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.95 cm e massa m=1.31 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.08 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.15 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.17$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.225 \end{bmatrix} \quad C \begin{bmatrix} 0.405 \end{bmatrix} \quad D \begin{bmatrix} 0.585 \end{bmatrix} \quad E \begin{bmatrix} 0.765 \end{bmatrix} \quad F \begin{bmatrix} 0.945 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.7 cm, raggio r=1.62 cm (si noti r<< h), spessore d=0.184 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.42\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.184$ tesla e $\tau=1.20$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 109 C 289 D 469 E 649 F 829

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0150}$ C $\boxed{0.0330}$ D $\boxed{0.0510}$ E $\boxed{0.0690}$ F $\boxed{0.0870}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.122$ m, sulla cui superficie è depositata una carica $Q = 1.46~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.56 \times 10^3 \text{ rad/s}$.

 $A \boxed{0} \quad B \boxed{10.2} \quad C \boxed{28.2} \quad D \boxed{46.2} \quad E \boxed{64.2} \quad F \boxed{82.2}$

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.02 cm e b=1.74 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.76 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.58$ tesla, $B_y=1.64$ tesla e $B_z=1.86$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 174 C 354 D 534 E 714 F 894

10) Una spira quadrata di lato a = 0.0111 m è percorsa da una corrente stazionaria I = 0.155 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.13 nC, si muove con velocità | \vec{v} |= 2.35×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 165 C 345 D 525 E 705 F 885

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.82 cm. In ciascun filo circola nello stesso verso una corrente I=1.93 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.110}$ C $\boxed{0.290}$ D $\boxed{0.470}$ E $\boxed{0.650}$ F $\boxed{0.830}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.5 cm e b=0.518 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=52.8 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.78$ ampere e $I_b=1.12$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0239}$ C $\boxed{0.0419}$ D $\boxed{0.0599}$ E $\boxed{0.0779}$ F $\boxed{0.0959}$

4) Una lamina metallica di forma cilindrica ha raggio r=13.0 mm, spessore $\delta=0.586$ mm (si noti $\delta << r$) e altezza h=203 mm (si noti r<< h). Sia $\sigma=1.77\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.56$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.

A $\boxed{0}$ B $\boxed{1.25}$ C $\boxed{3.05}$ D $\boxed{4.85}$ E $\boxed{6.65}$ F $\boxed{8.45}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.89 cm e massa m=1.61 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.98 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.73 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.81$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.185 \end{bmatrix} \quad C \begin{bmatrix} 0.365 \end{bmatrix} \quad D \begin{bmatrix} 0.545 \end{bmatrix} \quad E \begin{bmatrix} 0.725 \end{bmatrix} \quad F \begin{bmatrix} 0.905 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.2 cm, raggio r=1.19 cm (si noti r<< h), spessore d=0.138 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.22\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.193$ tesla e $\tau=1.13$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 276 C 456 D 636 E 816 F 996

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{2.51 \times 10^{-3}} \quad C \ \boxed{4.31 \times 10^{-3}} \quad D \ \boxed{6.11 \times 10^{-3}} \quad E \ \boxed{7.91 \times 10^{-3}} \quad F \ \boxed{9.71 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.180$ m, sulla cui superficie è depositata una carica $Q = 1.57~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.99 \times 10^3 \text{ rad/s}$.

A 0 B 12.4 C 30.4 D 48.4 E 66.4 F 84.4

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.92 cm e b=1.12 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.89 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.98$ tesla, $B_y=1.80$ tesla e $B_z=1.79$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 249 C 429 D 609 E 789 F 969

10) Una spira quadrata di lato a=0.0145 m è percorsa da una corrente stazionaria I=0.130 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \ \boxed{0} \quad B \ \boxed{0.101} \quad C \ \boxed{0.281} \quad D \ \boxed{0.461} \quad E \ \boxed{0.641} \quad F \ \boxed{0.821}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.45 nC, si muove con velocità | \vec{v} |= 1.16×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 228 C 408 D 588 E 768 F 948

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.18 cm. In ciascun filo circola nello stesso verso una corrente I=1.63 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.226}$ C $\boxed{0.406}$ D $\boxed{0.586}$ E $\boxed{0.766}$ F $\boxed{0.946}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a = 10.9 cm e b = 0.537 cm, (si noti b << a) sono disposte coassialmente ad una distanza h = 50.8 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a = 1.50$ ampere e $I_b = 1.26$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0248}$ C $\boxed{0.0428}$ D $\boxed{0.0608}$ E $\boxed{0.0788}$ F $\boxed{0.0968}$

4) Una lamina metallica di forma cilindrica ha raggio r = 13.4 mm, spessore $\delta = 0.548$ mm (si noti $\delta << r$) e altezza h = 210 mm (si noti r << h). Sia $\sigma = 1.50 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.68$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A 0 B 1.30 C 3.10 D 4.90 E 6.70 F 8.50

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.19 cm e massa m=1.88 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.89 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.12 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.01$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.145} \quad C \boxed{0.325} \quad D \boxed{0.505} \quad E \boxed{0.685} \quad F \boxed{0.865}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.7 cm, raggio r=1.69 cm (si noti r<< h), spessore d=0.100 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.61\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.182$ tesla e $\tau=1.89$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 122 C 302 D 482 E 662 F 842

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{2.46 \times 10^{-3}}$ C $\boxed{4.26 \times 10^{-3}}$ D $\boxed{6.06 \times 10^{-3}}$ E $\boxed{7.86 \times 10^{-3}}$ F $\boxed{9.66 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.159$ m, sulla cui superficie è depositata una carica $Q = 1.62~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.68 \times 10^3 \text{ rad/s}$.

A 0 B 20.6 C 38.6 D 56.6 E 74.6 F 92.6

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.03 cm e b=1.92 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.65 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.76$ tesla, $B_y=2.00$ tesla e $B_z=1.74$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 109 C 289 D 469 E 649 F 829

10) Una spira quadrata di lato a=0.0107 m è percorsa da una corrente stazionaria I=0.194 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.205 \end{bmatrix} \quad C \begin{bmatrix} 0.385 \end{bmatrix} \quad D \begin{bmatrix} 0.565 \end{bmatrix} \quad E \begin{bmatrix} 0.745 \end{bmatrix} \quad F \begin{bmatrix} 0.925 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q = 1.31 nC, si muove con velocità | \vec{v} |= 1.88×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 223 C 403 D 583 E 763 F 943

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.74 cm. In ciascun filo circola nello stesso verso una corrente I=2.69 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.116}$ C $\boxed{0.296}$ D $\boxed{0.476}$ E $\boxed{0.656}$ F $\boxed{0.836}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a = 10.9 cm e b = 0.537 cm, (si noti b << a) sono disposte coassialmente ad una distanza h = 53.4 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a = 1.60$ ampere e $I_b = 1.55$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \boxed{0} B \boxed{0.0108} C \boxed{0.0288} D \boxed{0.0468} E \boxed{0.0648} F \boxed{0.0828}$

4) Una lamina metallica di forma cilindrica ha raggio r = 11.1 mm, spessore $\delta = 0.549$ mm (si noti $\delta << r$) e altezza h = 207 mm (si noti r << h). Sia $\sigma = 1.23 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.19$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A $\boxed{0}$ B $\boxed{0.121}$ C $\boxed{0.301}$ D $\boxed{0.481}$ E $\boxed{0.661}$ F $\boxed{0.841}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.36 cm e massa m=1.23 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.80 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.18 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.12$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.200} \quad C \boxed{0.380} \quad D \boxed{0.560} \quad E \boxed{0.740} \quad F \boxed{0.920}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.4 cm, raggio r=1.79 cm (si noti r<< h), spessore d=0.180 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.42\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.171$ tesla e $\tau=1.45$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 191 C 371 D 551 E 731 F 911

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0125}$ C $\boxed{0.0305}$ D $\boxed{0.0485}$ E $\boxed{0.0665}$ F $\boxed{0.0845}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.118$ m, sulla cui superficie è depositata una carica $Q = 1.71~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.19 \times 10^3 \text{ rad/s}$.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 1.30 \end{bmatrix} \quad C \begin{bmatrix} 3.10 \end{bmatrix} \quad D \begin{bmatrix} 4.90 \end{bmatrix} \quad E \begin{bmatrix} 6.70 \end{bmatrix} \quad F \begin{bmatrix} 8.50 \end{bmatrix}$

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.25 cm e b=1.65 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.30 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.41$ tesla, $B_y=1.09$ tesla e $B_z=1.67$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 19.1 C 37.1 D 55.1 E 73.1 F 91.1

10) Una spira quadrata di lato a = 0.0125 m è percorsa da una corrente stazionaria I = 0.101 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0194 \end{bmatrix} \quad C \begin{bmatrix} 0.0374 \end{bmatrix} \quad D \begin{bmatrix} 0.0554 \end{bmatrix} \quad E \begin{bmatrix} 0.0734 \end{bmatrix} \quad F \begin{bmatrix} 0.0914 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.19 nC, si muove con velocità | \vec{v} |= 2.21×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- $A \boxed{0} \quad B \boxed{277} \quad C \boxed{457} \quad D \boxed{637} \quad E \boxed{817} \quad F \boxed{997}$
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.18 cm. In ciascun filo circola nello stesso verso una corrente I=2.63 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- $A \boxed{0} \quad B \boxed{0.152} \quad C \boxed{0.332} \quad D \boxed{0.512} \quad E \boxed{0.692} \quad F \boxed{0.872}$
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.1 cm e b=0.526 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=50.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.28$ ampere e $I_b=1.63$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0125 \end{bmatrix} \quad C \begin{bmatrix} 0.0305 \end{bmatrix} \quad D \begin{bmatrix} 0.0485 \end{bmatrix} \quad E \begin{bmatrix} 0.0665 \end{bmatrix} \quad F \begin{bmatrix} 0.0845 \end{bmatrix}$
- 4) Una lamina metallica di forma cilindrica ha raggio r=11.4 mm, spessore $\delta=0.508$ mm (si noti $\delta << r$) e altezza h=208 mm (si noti r << h). Sia $\sigma=1.40\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.46$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.160 \end{bmatrix} \quad C \begin{bmatrix} 0.340 \end{bmatrix} \quad D \begin{bmatrix} 0.520 \end{bmatrix} \quad E \begin{bmatrix} 0.700 \end{bmatrix} \quad F \begin{bmatrix} 0.880 \end{bmatrix}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.60 cm e massa m=1.20 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.88 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.31 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.65$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- $A \ \boxed{0} \quad B \ \boxed{0.105} \quad C \ \boxed{0.285} \quad D \ \boxed{0.465} \quad E \ \boxed{0.645} \quad F \ \boxed{0.825}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.1 cm, raggio r=1.02 cm (si noti r<< h), spessore d=0.184 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.31\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.166$ tesla e $\tau=1.14$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 178 C 358 D 538 E 718 F 898

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{1.08 \times 10^{-3}} \quad C \ \boxed{2.88 \times 10^{-3}} \quad D \ \boxed{4.68 \times 10^{-3}} \quad E \ \boxed{6.48 \times 10^{-3}} \quad F \ \boxed{8.28 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.172$ m, sulla cui superficie è depositata una carica $Q = 1.75 \mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.81 \times 10^3 \text{ rad/s}$.

A 0 B 10.1 C 28.1 D 46.1 E 64.1 F 82.1

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.97 cm e b=1.76 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.85 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.56$ tesla, $B_y=1.36$ tesla e $B_z=1.44$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 160 C 340 D 520 E 700 F 880

10) Una spira quadrata di lato a = 0.0138 m è percorsa da una corrente stazionaria I = 0.146 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.85 nC, si muove con velocità | \vec{v} |= 2.48×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- A 0 B 181 C 361 D 541 E 721 F 901
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.65 cm. In ciascun filo circola nello stesso verso una corrente I=2.40 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.8 cm e b=0.513 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=51.0 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.28$ ampere e $I_b=1.73$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \boxed{0} \quad B \boxed{0.0200} \quad C \boxed{0.0380} \quad D \boxed{0.0560} \quad E \boxed{0.0740} \quad F \boxed{0.0920}$
- 4) Una lamina metallica di forma cilindrica ha raggio r=11.5 mm, spessore $\delta=0.517$ mm (si noti $\delta << r$) e altezza h=200 mm (si noti r << h). Sia $\sigma=1.94\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.23$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.153 \end{bmatrix} \quad C \begin{bmatrix} 0.333 \end{bmatrix} \quad D \begin{bmatrix} 0.513 \end{bmatrix} \quad E \begin{bmatrix} 0.693 \end{bmatrix} \quad F \begin{bmatrix} 0.873 \end{bmatrix}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.05 cm e massa m=1.78 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.54 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.71 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.92$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- $A \boxed{0} \quad B \boxed{0.240} \quad C \boxed{0.420} \quad D \boxed{0.600} \quad E \boxed{0.780} \quad F \boxed{0.960}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.3 cm, raggio r=1.46 cm (si noti r<< h), spessore d=0.173 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.22\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.122$ tesla e $\tau=1.58$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 253 C 433 D 613 E 793 F 973

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{1.90 \times 10^{-3}}$ C $\boxed{3.70 \times 10^{-3}}$ D $\boxed{5.50 \times 10^{-3}}$ E $\boxed{7.30 \times 10^{-3}}$ F $\boxed{9.10 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.178$ m, sulla cui superficie è depositata una carica $Q = 1.58 \mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.02 \times 10^3 \text{ rad/s}$.

A 0 B 15.3 C 33.3 D 51.3 E 69.3 F 87.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.16 cm e b=1.03 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.71 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.58$ tesla, $B_y=1.78$ tesla e $B_z=1.04$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 168 C 348 D 528 E 708 F 888

10) Una spira quadrata di lato a=0.0128 m è percorsa da una corrente stazionaria I=0.159 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.141 \end{bmatrix} \quad C \begin{bmatrix} 0.321 \end{bmatrix} \quad D \begin{bmatrix} 0.501 \end{bmatrix} \quad E \begin{bmatrix} 0.681 \end{bmatrix} \quad F \begin{bmatrix} 0.861 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.77 nC, si muove con velocità | \vec{v} |= 2.75×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 205 C 385 D 565 E 745 F 925

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.79 cm. In ciascun filo circola nello stesso verso una corrente I=2.36 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.179}$ C $\boxed{0.359}$ D $\boxed{0.539}$ E $\boxed{0.719}$ F $\boxed{0.899}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.0 cm e b=0.593 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=56.2 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.27$ ampere e $I_b=1.98$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0199 \end{bmatrix} \quad C \begin{bmatrix} 0.0379 \end{bmatrix} \quad D \begin{bmatrix} 0.0559 \end{bmatrix} \quad E \begin{bmatrix} 0.0739 \end{bmatrix} \quad F \begin{bmatrix} 0.0919 \end{bmatrix}$

4) Una lamina metallica di forma cilindrica ha raggio r = 12.0 mm, spessore $\delta = 0.580$ mm (si noti $\delta << r$) e altezza h = 207 mm (si noti r << h). Sia $\sigma = 1.32 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.06$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.162 \end{bmatrix} \quad C \begin{bmatrix} 0.342 \end{bmatrix} \quad D \begin{bmatrix} 0.522 \end{bmatrix} \quad E \begin{bmatrix} 0.702 \end{bmatrix} \quad F \begin{bmatrix} 0.882 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.16 cm e massa m=1.05 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.28 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.37 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.63$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.275 \end{bmatrix} \quad C \begin{bmatrix} 0.455 \end{bmatrix} \quad D \begin{bmatrix} 0.635 \end{bmatrix} \quad E \begin{bmatrix} 0.815 \end{bmatrix} \quad F \begin{bmatrix} 0.995 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.1 cm, raggio r=1.95 cm (si noti r<< h), spessore d=0.164 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.23\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.198$ tesla e $\tau=1.36$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 102 C 282 D 462 E 642 F 822

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0132}$ C $\boxed{0.0312}$ D $\boxed{0.0492}$ E $\boxed{0.0672}$ F $\boxed{0.0852}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.181$ m, sulla cui superficie è depositata una carica $Q = 1.76~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.40 \times 10^3 \text{ rad/s}$.

A 0 B 24.2 C 42.2 D 60.2 E 78.2 F 96.2

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.10 cm e b=1.35 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.57 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.48$ tesla, $B_y=1.23$ tesla e $B_z=1.46$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 209 C 389 D 569 E 749 F 929

10) Una spira quadrata di lato a = 0.0116 m è percorsa da una corrente stazionaria I = 0.127 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.56 nC, si muove con velocità | \vec{v} |= 2.08×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 211 C 391 D 571 E 751 F 931

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.74 cm. In ciascun filo circola nello stesso verso una corrente I=1.36 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.152}$ C $\boxed{0.332}$ D $\boxed{0.512}$ E $\boxed{0.692}$ F $\boxed{0.872}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.3 cm e b=0.506 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=55.0 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.40$ ampere e $I_b=1.22$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \boxed{0} \quad B \boxed{0.0193} \quad C \boxed{0.0373} \quad D \boxed{0.0553} \quad E \boxed{0.0733} \quad F \boxed{0.0913}$

4) Una lamina metallica di forma cilindrica ha raggio r = 12.7 mm, spessore $\delta = 0.569$ mm (si noti $\delta << r$) e altezza h = 206 mm (si noti r << h). Sia $\sigma = 1.18 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.75$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.245 \end{bmatrix} \quad C \begin{bmatrix} 0.425 \end{bmatrix} \quad D \begin{bmatrix} 0.605 \end{bmatrix} \quad E \begin{bmatrix} 0.785 \end{bmatrix} \quad F \begin{bmatrix} 0.965 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.54 cm e massa m=1.82 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.98 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.52 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.18$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.230} \quad C \boxed{0.410} \quad D \boxed{0.590} \quad E \boxed{0.770} \quad F \boxed{0.950}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.8 cm, raggio r=1.28 cm (si noti r<< h), spessore d=0.157 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.89\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.164$ tesla e $\tau=1.14$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 100 C 280 D 460 E 640 F 820

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \boxed{0} B \boxed{0.0126} C \boxed{0.0306} D \boxed{0.0486} E \boxed{0.0666} F \boxed{0.0846}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.137$ m, sulla cui superficie è depositata una carica $Q = 1.87~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.60 \times 10^3~\text{rad/s}$.

A 0 B 16.8 C 34.8 D 52.8 E 70.8 F 88.8

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.53 cm e b=1.14 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.99 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.31$ tesla, $B_y=1.68$ tesla e $B_z=1.36$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 237 C 417 D 597 E 777 F 957

10) Una spira quadrata di lato a = 0.0149 m è percorsa da una corrente stazionaria I = 0.102 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \ \boxed{0} \quad B \ \boxed{0.0234} \quad C \ \boxed{0.0414} \quad D \ \boxed{0.0594} \quad E \ \boxed{0.0774} \quad F \ \boxed{0.0954}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.97 nC, si muove con velocità | \vec{v} |= 1.86×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- $A \boxed{0} \quad B \boxed{157} \quad C \boxed{337} \quad D \boxed{517} \quad E \boxed{697} \quad F \boxed{877}$
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.27 cm. In ciascun filo circola nello stesso verso una corrente I=2.07 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- A $\boxed{0}$ B $\boxed{0.207}$ C $\boxed{0.387}$ D $\boxed{0.567}$ E $\boxed{0.747}$ F $\boxed{0.927}$
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.1 cm e b=0.522 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=57.1 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.87$ ampere e $I_b=1.76$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \boxed{0} B \boxed{0.0135} C \boxed{0.0315} D \boxed{0.0495} E \boxed{0.0675} F \boxed{0.0855}$
- 4) Una lamina metallica di forma cilindrica ha raggio r=12.6 mm, spessore $\delta=0.585$ mm (si noti $\delta << r$) e altezza h=203 mm (si noti r<< h). Sia $\sigma=1.70\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.64$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 1.21 \end{bmatrix} \quad C \begin{bmatrix} 3.01 \end{bmatrix} \quad D \begin{bmatrix} 4.81 \end{bmatrix} \quad E \begin{bmatrix} 6.61 \end{bmatrix} \quad F \begin{bmatrix} 8.41 \end{bmatrix}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.57 cm e massa m=1.27 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.53 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.21 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.41$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.165 \end{bmatrix} \quad C \begin{bmatrix} 0.345 \end{bmatrix} \quad D \begin{bmatrix} 0.525 \end{bmatrix} \quad E \begin{bmatrix} 0.705 \end{bmatrix} \quad F \begin{bmatrix} 0.885 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.9 cm, raggio r=1.08 cm (si noti r<< h), spessore d=0.101 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.43\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.122$ tesla e $\tau=2.00$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 173 C 353 D 533 E 713 F 893

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{2.20 \times 10^{-3}}$ C $\boxed{4.00 \times 10^{-3}}$ D $\boxed{5.80 \times 10^{-3}}$ E $\boxed{7.60 \times 10^{-3}}$ F $\boxed{9.40 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.174$ m, sulla cui superficie è depositata una carica $Q = 1.90~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.35 \times 10^3 \text{ rad/s}$.

A 0 B 23.3 C 41.3 D 59.3 E 77.3 F 95.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.23 cm e b=1.92 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.77 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.21$ tesla, $B_y=1.35$ tesla e $B_z=1.40$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 265 C 445 D 625 E 805 F 985

10) Una spira quadrata di lato a = 0.0174 m è percorsa da una corrente stazionaria I = 0.146 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A $\boxed{0}$ B $\boxed{0.0229}$ C $\boxed{0.0409}$ D $\boxed{0.0589}$ E $\boxed{0.0769}$ F $\boxed{0.0949}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.90 nC, si muove con velocità | \vec{v} |= 1.66×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 166 C 346 D 526 E 706 F 886

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.78 cm. In ciascun filo circola nello stesso verso una corrente I=2.96 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.166}$ C $\boxed{0.346}$ D $\boxed{0.526}$ E $\boxed{0.706}$ F $\boxed{0.886}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.2 cm e b=0.567 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=56.8 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.82$ ampere e $I_b=1.24$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0246 \end{bmatrix} \quad C \begin{bmatrix} 0.0426 \end{bmatrix} \quad D \begin{bmatrix} 0.0606 \end{bmatrix} \quad E \begin{bmatrix} 0.0786 \end{bmatrix} \quad F \begin{bmatrix} 0.0966 \end{bmatrix}$

4) Una lamina metallica di forma cilindrica ha raggio r = 14.8 mm, spessore $\delta = 0.536$ mm (si noti $\delta << r$) e altezza h = 205 mm (si noti r << h). Sia $\sigma = 1.37 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.26$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.142 \end{bmatrix} \quad C \begin{bmatrix} 0.322 \end{bmatrix} \quad D \begin{bmatrix} 0.502 \end{bmatrix} \quad E \begin{bmatrix} 0.682 \end{bmatrix} \quad F \begin{bmatrix} 0.862 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.53 cm e massa m=1.37 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.70 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.74 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.37$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.145 \end{bmatrix} \quad C \begin{bmatrix} 0.325 \end{bmatrix} \quad D \begin{bmatrix} 0.505 \end{bmatrix} \quad E \begin{bmatrix} 0.685 \end{bmatrix} \quad F \begin{bmatrix} 0.865 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.4 cm, raggio r=1.64 cm (si noti r<< h), spessore d=0.172 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.66\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.156$ tesla e $\tau=1.49$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 164 C 344 D 524 E 704 F 884

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0113}$ C $\boxed{0.0293}$ D $\boxed{0.0473}$ E $\boxed{0.0653}$ F $\boxed{0.0833}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.187$ m, sulla cui superficie è depositata una carica $Q = 1.91~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.89 \times 10^3 \text{ rad/s}$.

A 0 B 19.9 C 37.9 D 55.9 E 73.9 F 91.9

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.62 cm e b=1.37 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.51 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.07$ tesla, $B_y=1.70$ tesla e $B_z=1.90$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 216 C 396 D 576 E 756 F 936

10) Una spira quadrata di lato a = 0.0105 m è percorsa da una corrente stazionaria I = 0.188 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A $\boxed{0}$ B $\boxed{0.203}$ C $\boxed{0.383}$ D $\boxed{0.563}$ E $\boxed{0.743}$ F $\boxed{0.923}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.46 nC, si muove con velocità | \vec{v} |= 2.41×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

 $A \boxed{0} \quad B \boxed{227} \quad C \boxed{407} \quad D \boxed{587} \quad E \boxed{767} \quad F \boxed{947}$

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.64 cm. In ciascun filo circola nello stesso verso una corrente I=2.36 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.199}$ C $\boxed{0.379}$ D $\boxed{0.559}$ E $\boxed{0.739}$ F $\boxed{0.919}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.1 cm e b=0.527 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=50.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.33$ ampere e $I_b=1.80$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \boxed{0} B \boxed{0.0197} C \boxed{0.0377} D \boxed{0.0557} E \boxed{0.0737} F \boxed{0.0917}$

4) Una lamina metallica di forma cilindrica ha raggio r = 12.1 mm, spessore $\delta = 0.502$ mm (si noti $\delta << r$) e altezza h = 205 mm (si noti r << h). Sia $\sigma = 1.79 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.46$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A $\boxed{0}$ B $\boxed{0.234}$ C $\boxed{0.414}$ D $\boxed{0.594}$ E $\boxed{0.774}$ F $\boxed{0.954}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.18 cm e massa m=1.51 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.12 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.73 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.00$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.140} \quad C \boxed{0.320} \quad D \boxed{0.500} \quad E \boxed{0.680} \quad F \boxed{0.860}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=21.0 cm, raggio r=1.64 cm (si noti r<< h), spessore d=0.189 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.61\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.101$ tesla e $\tau=1.40$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 170 C 350 D 530 E 710 F 890

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{1.12 \times 10^{-3}} \quad C \ \boxed{2.92 \times 10^{-3}} \quad D \ \boxed{4.72 \times 10^{-3}} \quad E \ \boxed{6.52 \times 10^{-3}} \quad F \ \boxed{8.32 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.168$ m, sulla cui superficie è depositata una carica $Q = 1.71~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.31 \times 10^3 \text{ rad/s}$.

A 0 B 19.0 C 37.0 D 55.0 E 73.0 F 91.0

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.73 cm e b=1.59 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.88 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.45$ tesla, $B_y=1.30$ tesla e $B_z=1.70$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 254 C 434 D 614 E 794 F 974

10) Una spira quadrata di lato a=0.0114 m è percorsa da una corrente stazionaria I=0.136 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A $\boxed{0}$ B $\boxed{0.135}$ C $\boxed{0.315}$ D $\boxed{0.495}$ E $\boxed{0.675}$ F $\boxed{0.855}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.37 nC, si muove con velocità | \vec{v} |= 2.38×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 190 C 370 D 550 E 730 F 910

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.54 cm. In ciascun filo circola nello stesso verso una corrente I=2.21 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.189}$ C $\boxed{0.369}$ D $\boxed{0.549}$ E $\boxed{0.729}$ F $\boxed{0.909}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.7 cm e b=0.531 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=54.0 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.17$ ampere e $I_b=1.48$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0205}$ C $\boxed{0.0385}$ D $\boxed{0.0565}$ E $\boxed{0.0745}$ F $\boxed{0.0925}$

4) Una lamina metallica di forma cilindrica ha raggio r = 14.6 mm, spessore $\delta = 0.529$ mm (si noti $\delta << r$) e altezza h = 202 mm (si noti r << h). Sia $\sigma = 1.91 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.28$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 1.16 \end{bmatrix} \quad C \begin{bmatrix} 2.96 \end{bmatrix} \quad D \begin{bmatrix} 4.76 \end{bmatrix} \quad E \begin{bmatrix} 6.56 \end{bmatrix} \quad F \begin{bmatrix} 8.36 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.86 cm e massa m=1.80 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.89 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.86 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.21$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.245} \quad C \boxed{0.425} \quad D \boxed{0.605} \quad E \boxed{0.785} \quad F \boxed{0.965}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.6 cm, raggio r=1.58 cm (si noti r<< h), spessore d=0.151 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.30\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.117$ tesla e $\tau=1.40$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 136 C 316 D 496 E 676 F 856

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{2.39 \times 10^{-3}} \quad C \ \boxed{4.19 \times 10^{-3}} \quad D \ \boxed{5.99 \times 10^{-3}} \quad E \ \boxed{7.79 \times 10^{-3}} \quad F \ \boxed{9.59 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.175$ m, sulla cui superficie è depositata una carica $Q = 1.47~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.10 \times 10^3 \text{ rad/s}$.

A 0 B 14.9 C 32.9 D 50.9 E 68.9 F 86.9

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.89 cm e b=1.83 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.07 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.07$ tesla, $B_y=1.52$ tesla e $B_z=1.84$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 153 C 333 D 513 E 693 F 873

10) Una spira quadrata di lato a = 0.0168 m è percorsa da una corrente stazionaria I = 0.124 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A 0 B 0.0115 C 0.0295 D 0.0475 E 0.0655 F 0.0835

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.15 nC, si muove con velocità | \vec{v} |= 1.82×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 150 C 330 D 510 E 690 F 870

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.27 cm. In ciascun filo circola nello stesso verso una corrente I=2.97 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.195}$ C $\boxed{0.375}$ D $\boxed{0.555}$ E $\boxed{0.735}$ F $\boxed{0.915}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.7 cm e b=0.585 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=59.0 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.98$ ampere e $I_b=1.71$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0253}$ C $\boxed{0.0433}$ D $\boxed{0.0613}$ E $\boxed{0.0793}$ F $\boxed{0.0973}$

4) Una lamina metallica di forma cilindrica ha raggio r=13.5 mm, spessore $\delta=0.588$ mm (si noti $\delta << r$) e altezza h=206 mm (si noti r<< h). Sia $\sigma=1.91\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.45$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 1.33 \end{bmatrix} \quad C \begin{bmatrix} 3.13 \end{bmatrix} \quad D \begin{bmatrix} 4.93 \end{bmatrix} \quad E \begin{bmatrix} 6.73 \end{bmatrix} \quad F \begin{bmatrix} 8.53 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.15 cm e massa m=1.42 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.74 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.32 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.82$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.190} \quad C \boxed{0.370} \quad D \boxed{0.550} \quad E \boxed{0.730} \quad F \boxed{0.910}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.5 cm, raggio r=1.79 cm (si noti r<< h), spessore d=0.192 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.38\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.162$ tesla e $\tau=1.99$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 190 C 370 D 550 E 730 F 910

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{1.72 \times 10^{-3}}$ C $\boxed{3.52 \times 10^{-3}}$ D $\boxed{5.32 \times 10^{-3}}$ E $\boxed{7.12 \times 10^{-3}}$ F $\boxed{8.92 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.145$ m, sulla cui superficie è depositata una carica $Q = 1.15 \mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.83 \times 10^3 \text{ rad/s}$.

A 0 B 13.3 C 31.3 D 49.3 E 67.3 F 85.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.13 cm e b=1.38 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.99 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.20$ tesla, $B_y=1.79$ tesla e $B_z=1.63$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 119 C 299 D 479 E 659 F 839

10) Una spira quadrata di lato a = 0.0119 m è percorsa da una corrente stazionaria I = 0.149 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.142 \end{bmatrix} \quad C \begin{bmatrix} 0.322 \end{bmatrix} \quad D \begin{bmatrix} 0.502 \end{bmatrix} \quad E \begin{bmatrix} 0.682 \end{bmatrix} \quad F \begin{bmatrix} 0.862 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.18 nC, si muove con velocità | \vec{v} |= 1.94×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

 $A \boxed{0} \quad B \boxed{127} \quad C \boxed{307} \quad D \boxed{487} \quad E \boxed{667} \quad F \boxed{847}$

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.38 cm. In ciascun filo circola nello stesso verso una corrente I=2.58 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.253}$ C $\boxed{0.433}$ D $\boxed{0.613}$ E $\boxed{0.793}$ F $\boxed{0.973}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a = 10.3 cm e b = 0.576 cm, (si noti b << a) sono disposte coassialmente ad una distanza h = 57.0 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a = 1.79$ ampere e $I_b = 1.91$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0143}$ C $\boxed{0.0323}$ D $\boxed{0.0503}$ E $\boxed{0.0683}$ F $\boxed{0.0863}$

4) Una lamina metallica di forma cilindrica ha raggio r = 10.6 mm, spessore $\delta = 0.554$ mm (si noti $\delta << r$) e altezza h = 202 mm (si noti r << h). Sia $\sigma = 1.94 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.03$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A $\boxed{0}$ B $\boxed{0.125}$ C $\boxed{0.305}$ D $\boxed{0.485}$ E $\boxed{0.665}$ F $\boxed{0.845}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.02 cm e massa m=1.85 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.41 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.64 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.84$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.200} \quad C \boxed{0.380} \quad D \boxed{0.560} \quad E \boxed{0.740} \quad F \boxed{0.920}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.9 cm, raggio r=1.79 cm (si noti r<< h), spessore d=0.168 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.99\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.117$ tesla e $\tau=1.67$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 279 C 459 D 639 E 819 F 999

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{2.49 \times 10^{-3}} \quad C \ \boxed{4.29 \times 10^{-3}} \quad D \ \boxed{6.09 \times 10^{-3}} \quad E \ \boxed{7.89 \times 10^{-3}} \quad F \ \boxed{9.69 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.119$ m, sulla cui superficie è depositata una carica $Q = 1.96~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.29 \times 10^3 \text{ rad/s}$.

A $\boxed{0}$ B $\boxed{10.7}$ C $\boxed{28.7}$ D $\boxed{46.7}$ E $\boxed{64.7}$ F $\boxed{82.7}$

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.38 cm e b=1.45 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.77 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.47$ tesla, $B_y=1.92$ tesla e $B_z=1.96$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 180 C 360 D 540 E 720 F 900

10) Una spira quadrata di lato a=0.0126 m è percorsa da una corrente stazionaria I=0.127 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A 0 B 0.114 C 0.294 D 0.474 E 0.654 F 0.834

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.91 nC, si muove con velocità | \vec{v} |= 1.13×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- A 0 B 164 C 344 D 524 E 704 F 884
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.26 cm. In ciascun filo circola nello stesso verso una corrente I=1.14 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- $A \boxed{0} B \boxed{0.214} C \boxed{0.394} D \boxed{0.574} E \boxed{0.754} F \boxed{0.934}$
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.6 cm e b=0.586 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=50.1 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.63$ ampere e $I_b=1.88$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \boxed{0} \quad B \boxed{0.107} \quad C \boxed{0.287} \quad D \boxed{0.467} \quad E \boxed{0.647} \quad F \boxed{0.827}$
- 4) Una lamina metallica di forma cilindrica ha raggio r=14.3 mm, spessore $\delta=0.504$ mm (si noti $\delta << r$) e altezza h=205 mm (si noti r << h). Sia $\sigma=1.70\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.90$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.
- $A \boxed{0} \quad B \boxed{2.06} \quad C \boxed{3.86} \quad D \boxed{5.66} \quad E \boxed{7.46} \quad F \boxed{9.26}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.30 cm e massa m=1.38 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.89 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.47 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.05$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.165 \end{bmatrix} \quad C \begin{bmatrix} 0.345 \end{bmatrix} \quad D \begin{bmatrix} 0.525 \end{bmatrix} \quad E \begin{bmatrix} 0.705 \end{bmatrix} \quad F \begin{bmatrix} 0.885 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.1 cm, raggio r=1.44 cm (si noti r<< h), spessore d=0.134 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.45\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.189$ tesla e $\tau=1.11$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 114 C 294 D 474 E 654 F 834

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \boxed{0} B \boxed{0.0110} C \boxed{0.0290} D \boxed{0.0470} E \boxed{0.0650} F \boxed{0.0830}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.192$ m, sulla cui superficie è depositata una carica $Q = 1.81~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.07 \times 10^3 \text{ rad/s}$.

A 0 B 21.4 C 39.4 D 57.4 E 75.4 F 93.4

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.17 cm e b=1.08 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.79 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.13$ tesla, $B_y=1.15$ tesla e $B_z=1.42$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 103 C 283 D 463 E 643 F 823

10) Una spira quadrata di lato a = 0.0120 m è percorsa da una corrente stazionaria I = 0.175 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \boxed{0} \quad B \boxed{0.165} \quad C \boxed{0.345} \quad D \boxed{0.525} \quad E \boxed{0.705} \quad F \boxed{0.885}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.41 nC, si muove con velocità | \vec{v} |= 1.77 × 10³ m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 169 C 349 D 529 E 709 F 889

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.32 cm. In ciascun filo circola nello stesso verso una corrente I=1.13 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A 0 B 0.183 C 0.363 D 0.543 E 0.723 F 0.903

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a = 10.4 cm e b = 0.568 cm, (si noti b << a) sono disposte coassialmente ad una distanza h = 57.7 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a = 1.33$ ampere e $I_b = 1.99$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0140}$ C $\boxed{0.0320}$ D $\boxed{0.0500}$ E $\boxed{0.0680}$ F $\boxed{0.0860}$

4) Una lamina metallica di forma cilindrica ha raggio r = 10.8 mm, spessore $\delta = 0.522$ mm (si noti $\delta << r$) e altezza h = 205 mm (si noti r << h). Sia $\sigma = 1.20 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.30$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.124 \end{bmatrix} \quad C \begin{bmatrix} 0.304 \end{bmatrix} \quad D \begin{bmatrix} 0.484 \end{bmatrix} \quad E \begin{bmatrix} 0.664 \end{bmatrix} \quad F \begin{bmatrix} 0.844 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.90 cm e massa m=1.54 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.75 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.78 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.66$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.110} \quad C \boxed{0.290} \quad D \boxed{0.470} \quad E \boxed{0.650} \quad F \boxed{0.830}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.7 cm, raggio r=1.59 cm (si noti r<< h), spessore d=0.172 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.84\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.168$ tesla e $\tau=1.51$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 239 C 419 D 599 E 779 F 959

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0129}$ C $\boxed{0.0309}$ D $\boxed{0.0489}$ E $\boxed{0.0669}$ F $\boxed{0.0849}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.197$ m, sulla cui superficie è depositata una carica $Q = 1.83 \ \mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.94 \times 10^3 \ \text{rad/s}$.

A 0 B 23.3 C 41.3 D 59.3 E 77.3 F 95.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.17 cm e b=1.58 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.22 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.38$ tesla, $B_y=1.96$ tesla e $B_z=1.38$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 23.5 C 41.5 D 59.5 E 77.5 F 95.5

10) Una spira quadrata di lato a = 0.0144 m è percorsa da una corrente stazionaria I = 0.139 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q = 1.43 nC, si muove con velocità | $\vec{v} = 2.46 \times 10^3$ m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- A 0 B 159 C 339 D 519 E 699 F 879
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.09 cm. In ciascun filo circola nello stesso verso una corrente I=1.74 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- $A \boxed{0} B \boxed{0.137} C \boxed{0.317} D \boxed{0.497} E \boxed{0.677} F \boxed{0.857}$
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.9 cm e b=0.550 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=55.8 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.25$ ampere e $I_b=1.40$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0180 \end{bmatrix} \quad C \begin{bmatrix} 0.0360 \end{bmatrix} \quad D \begin{bmatrix} 0.0540 \end{bmatrix} \quad E \begin{bmatrix} 0.0720 \end{bmatrix} \quad F \begin{bmatrix} 0.0900 \end{bmatrix}$
- 4) Una lamina metallica di forma cilindrica ha raggio r = 10.6 mm, spessore $\delta = 0.600$ mm (si noti $\delta << r$) e altezza h = 202 mm (si noti r << h). Sia $\sigma = 1.78 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.67$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.
- A $\boxed{0}$ B $\boxed{0.257}$ C $\boxed{0.437}$ D $\boxed{0.617}$ E $\boxed{0.797}$ F $\boxed{0.977}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.78 cm e massa m=1.50 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.51 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.45 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.01$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.145 \end{bmatrix} \quad C \begin{bmatrix} 0.325 \end{bmatrix} \quad D \begin{bmatrix} 0.505 \end{bmatrix} \quad E \begin{bmatrix} 0.685 \end{bmatrix} \quad F \begin{bmatrix} 0.865 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.5 cm, raggio r=1.28 cm (si noti r<< h), spessore d=0.195 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.66\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.186$ tesla e $\tau=1.17$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 261 C 441 D 621 E 801 F 981

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0152}$ C $\boxed{0.0332}$ D $\boxed{0.0512}$ E $\boxed{0.0692}$ F $\boxed{0.0872}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.103$ m, sulla cui superficie è depositata una carica $Q = 1.82~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.55 \times 10^3$ rad/s.

A 0 B 1.78 C 3.58 D 5.38 E 7.18 F 8.98

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.48 cm e b=1.22 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.61 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.69$ tesla, $B_y=1.95$ tesla e $B_z=1.65$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 155 C 335 D 515 E 695 F 875

10) Una spira quadrata di lato a = 0.0106 m è percorsa da una corrente stazionaria I = 0.189 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.28 nC, si muove con velocità | \vec{v} |= 1.28×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 259 C 439 D 619 E 799 F 979

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.11 cm. In ciascun filo circola nello stesso verso una corrente I=2.52 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.147}$ C $\boxed{0.327}$ D $\boxed{0.507}$ E $\boxed{0.687}$ F $\boxed{0.867}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.1 cm e b=0.574 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=55.4 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.81$ ampere e $I_b=1.52$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0205}$ C $\boxed{0.0385}$ D $\boxed{0.0565}$ E $\boxed{0.0745}$ F $\boxed{0.0925}$

4) Una lamina metallica di forma cilindrica ha raggio r = 10.2 mm, spessore $\delta = 0.532$ mm (si noti $\delta << r$) e altezza h = 210 mm (si noti r << h). Sia $\sigma = 1.05 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.81$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A $\boxed{0}$ B $\boxed{0.274}$ C $\boxed{0.454}$ D $\boxed{0.634}$ E $\boxed{0.814}$ F $\boxed{0.994}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.25 cm e massa m=2.00 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.46 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.11 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.17$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.225 \end{bmatrix} \quad C \begin{bmatrix} 0.405 \end{bmatrix} \quad D \begin{bmatrix} 0.585 \end{bmatrix} \quad E \begin{bmatrix} 0.765 \end{bmatrix} \quad F \begin{bmatrix} 0.945 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.5 cm, raggio r=1.93 cm (si noti r<< h), spessore d=0.171 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.97\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.115$ tesla e $\tau=1.32$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 249 C 429 D 609 E 789 F 969

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0131}$ C $\boxed{0.0311}$ D $\boxed{0.0491}$ E $\boxed{0.0671}$ F $\boxed{0.0851}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.167$ m, sulla cui superficie è depositata una carica $Q = 1.09~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.97 \times 10^3 \text{ rad/s}$.

 $A \boxed{0} \quad B \boxed{18.0} \quad C \boxed{36.0} \quad D \boxed{54.0} \quad E \boxed{72.0} \quad F \boxed{90.0}$

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.73 cm e b=1.99 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.12 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.37$ tesla, $B_y=1.13$ tesla e $B_z=1.68$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 236 C 416 D 596 E 776 F 956

10) Una spira quadrata di lato a = 0.0113 m è percorsa da una corrente stazionaria I = 0.127 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \ \boxed{0} \quad B \ \boxed{0.127} \quad C \ \boxed{0.307} \quad D \ \boxed{0.487} \quad E \ \boxed{0.667} \quad F \ \boxed{0.847}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.33 nC, si muove con velocità | \vec{v} |= 1.16×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 249 C 429 D 609 E 789 F 969

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.86 cm. In ciascun filo circola nello stesso verso una corrente I=2.40 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.176}$ C $\boxed{0.356}$ D $\boxed{0.536}$ E $\boxed{0.716}$ F $\boxed{0.896}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.4 cm e b=0.590 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=57.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.21$ ampere e $I_b=1.15$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0248 \end{bmatrix} \quad C \begin{bmatrix} 0.0428 \end{bmatrix} \quad D \begin{bmatrix} 0.0608 \end{bmatrix} \quad E \begin{bmatrix} 0.0788 \end{bmatrix} \quad F \begin{bmatrix} 0.0968 \end{bmatrix}$

4) Una lamina metallica di forma cilindrica ha raggio r = 13.7 mm, spessore $\delta = 0.568$ mm (si noti $\delta << r$) e altezza h = 203 mm (si noti r << h). Sia $\sigma = 1.91 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.17$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \boxed{0} B \boxed{0.142} C \boxed{0.322} D \boxed{0.502} E \boxed{0.682} F \boxed{0.862}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.19 cm e massa m=1.62 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.15 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.34 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.94$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.250} \quad C \boxed{0.430} \quad D \boxed{0.610} \quad E \boxed{0.790} \quad F \boxed{0.970}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.8 cm, raggio r=1.43 cm (si noti r<< h), spessore d=0.191 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.55\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.142$ tesla e $\tau=1.03$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 202 C 382 D 562 E 742 F 922

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0135}$ C $\boxed{0.0315}$ D $\boxed{0.0495}$ E $\boxed{0.0675}$ F $\boxed{0.0855}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.192$ m, sulla cui superficie è depositata una carica $Q = 1.55 \mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.71 \times 10^3 \text{ rad/s}$.

A 0 B 11.3 C 29.3 D 47.3 E 65.3 F 83.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.05 cm e b=1.82 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.12 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.71$ tesla, $B_y=1.90$ tesla e $B_z=1.05$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 236 C 416 D 596 E 776 F 956

10) Una spira quadrata di lato a = 0.0141 m è percorsa da una corrente stazionaria I = 0.130 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.32 nC, si muove con velocità | \vec{v} |= 2.02×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 218 C 398 D 578 E 758 F 938

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.22 cm. In ciascun filo circola nello stesso verso una corrente I=2.81 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.257}$ C $\boxed{0.437}$ D $\boxed{0.617}$ E $\boxed{0.797}$ F $\boxed{0.977}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.2 cm e b=0.537 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=58.2 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.36$ ampere e $I_b=1.56$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0268}$ C $\boxed{0.0448}$ D $\boxed{0.0628}$ E $\boxed{0.0808}$ F $\boxed{0.0988}$

4) Una lamina metallica di forma cilindrica ha raggio r = 12.2 mm, spessore $\delta = 0.551$ mm (si noti $\delta << r$) e altezza h = 209 mm (si noti r << h). Sia $\sigma = 1.38 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.32$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \boxed{0} B \boxed{0.199} C \boxed{0.379} D \boxed{0.559} E \boxed{0.739} F \boxed{0.919}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.33 cm e massa m=1.29 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.87 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.75 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.32$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.120} \quad C \boxed{0.300} \quad D \boxed{0.480} \quad E \boxed{0.660} \quad F \boxed{0.840}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h = 20.8 cm, raggio r = 1.29 cm (si noti r << h), spessore d = 0.103 cm (si noti d << r) e conducibilità elettrica $\sigma = 1.83 \times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t > 0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t) = B_0 e^{-t/\tau}$, con $B_0 = 0.111$ tesla e $\tau = 1.15$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t = \tau$.

A 0 B 239 C 419 D 599 E 779 F 959

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{1.82 \times 10^{-3}}$ C $\boxed{3.62 \times 10^{-3}}$ D $\boxed{5.42 \times 10^{-3}}$ E $\boxed{7.22 \times 10^{-3}}$ F $\boxed{9.02 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.154$ m, sulla cui superficie è depositata una carica $Q = 1.01~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.20 \times 10^3 \text{ rad/s}$.

A 0 B 1.42 C 3.22 D 5.02 E 6.82 F 8.62

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.95 cm e b=1.31 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.16 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.11$ tesla, $B_y=1.82$ tesla e $B_z=1.27$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 276 C 456 D 636 E 816 F 996

10) Una spira quadrata di lato a = 0.0101 m è percorsa da una corrente stazionaria I = 0.100 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \boxed{0} \quad B \boxed{0.112} \quad C \boxed{0.292} \quad D \boxed{0.472} \quad E \boxed{0.652} \quad F \boxed{0.832}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.66 nC, si muove con velocità | \vec{v} |= 1.73×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 196 C 376 D 556 E 736 F 916

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.39 cm. In ciascun filo circola nello stesso verso una corrente I=1.55 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A 0 B 0.113 C 0.293 D 0.473 E 0.653 F 0.833

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.9 cm e b=0.510 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=56.6 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.19$ ampere e $I_b=1.42$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0272}$ C $\boxed{0.0452}$ D $\boxed{0.0632}$ E $\boxed{0.0812}$ F $\boxed{0.0992}$

4) Una lamina metallica di forma cilindrica ha raggio r = 14.7 mm, spessore $\delta = 0.506$ mm (si noti $\delta << r$) e altezza h = 202 mm (si noti r << h). Sia $\sigma = 1.27 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.84$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A $\boxed{0}$ B $\boxed{1.55}$ C $\boxed{3.35}$ D $\boxed{5.15}$ E $\boxed{6.95}$ F $\boxed{8.75}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.47 cm e massa m=1.30 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.66 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.58 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.44$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.180} \quad C \boxed{0.360} \quad D \boxed{0.540} \quad E \boxed{0.720} \quad F \boxed{0.900}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.2 cm, raggio r=1.59 cm (si noti r<< h), spessore d=0.165 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.15\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.189$ tesla e $\tau=1.80$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 173 C 353 D 533 E 713 F 893

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{1.92 \times 10^{-3}}$ C $\boxed{3.72 \times 10^{-3}}$ D $\boxed{5.52 \times 10^{-3}}$ E $\boxed{7.32 \times 10^{-3}}$ F $\boxed{9.12 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.125$ m, sulla cui superficie è depositata una carica $Q = 1.71~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.07 \times 10^3 \text{ rad/s}$.

A 0 B 1.38 C 3.18 D 4.98 E 6.78 F 8.58

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.27 cm e b=1.71 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.71 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.10$ tesla, $B_y=1.08$ tesla e $B_z=1.90$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 278 C 458 D 638 E 818 F 998

10) Una spira quadrata di lato a=0.0137 m è percorsa da una corrente stazionaria I=0.195 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.161 \end{bmatrix} \quad C \begin{bmatrix} 0.341 \end{bmatrix} \quad D \begin{bmatrix} 0.521 \end{bmatrix} \quad E \begin{bmatrix} 0.701 \end{bmatrix} \quad F \begin{bmatrix} 0.881 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.07 nC, si muove con velocità | \vec{v} |= 1.28×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 215 C 395 D 575 E 755 F 935

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.85 cm. In ciascun filo circola nello stesso verso una corrente I=2.97 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.141}$ C $\boxed{0.321}$ D $\boxed{0.501}$ E $\boxed{0.681}$ F $\boxed{0.861}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.2 cm e b=0.560 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=52.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.03$ ampere e $I_b=1.06$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0266 \end{bmatrix} \quad C \begin{bmatrix} 0.0446 \end{bmatrix} \quad D \begin{bmatrix} 0.0626 \end{bmatrix} \quad E \begin{bmatrix} 0.0806 \end{bmatrix} \quad F \begin{bmatrix} 0.0986 \end{bmatrix}$

4) Una lamina metallica di forma cilindrica ha raggio r = 12.7 mm, spessore $\delta = 0.569$ mm (si noti $\delta << r$) e altezza h = 206 mm (si noti r << h). Sia $\sigma = 1.99 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.89$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A $\boxed{0}$ B $\boxed{1.90}$ C $\boxed{3.70}$ D $\boxed{5.50}$ E $\boxed{7.30}$ F $\boxed{9.10}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.22 cm e massa m=1.64 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.04 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.12 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.44$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.180} \quad C \boxed{0.360} \quad D \boxed{0.540} \quad E \boxed{0.720} \quad F \boxed{0.900}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.3 cm, raggio r=1.83 cm (si noti r<< h), spessore d=0.151 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.56\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.154$ tesla e $\tau=1.22$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 123 C 303 D 483 E 663 F 843

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0126}$ C $\boxed{0.0306}$ D $\boxed{0.0486}$ E $\boxed{0.0666}$ F $\boxed{0.0846}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.166$ m, sulla cui superficie è depositata una carica $Q = 1.62~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.12 \times 10^3 \text{ rad/s}$.

A 0 B 15.0 C 33.0 D 51.0 E 69.0 F 87.0

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.03 cm e b=1.57 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.12 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.07$ tesla, $B_y=1.71$ tesla e $B_z=1.54$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 140 C 320 D 500 E 680 F 860

10) Una spira quadrata di lato a = 0.0105 m è percorsa da una corrente stazionaria I = 0.190 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.60 nC, si muove con velocità | \vec{v} |= 2.86×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

 $A \ \boxed{0} \ B \ \boxed{265} \ C \ \boxed{445} \ D \ \boxed{625} \ E \ \boxed{805} \ F \ \boxed{985}$

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.40 cm. In ciascun filo circola nello stesso verso una corrente I=2.70 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.278}$ C $\boxed{0.458}$ D $\boxed{0.638}$ E $\boxed{0.818}$ F $\boxed{0.998}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a = 10.6 cm e b = 0.584 cm, (si noti b << a) sono disposte coassialmente ad una distanza h = 58.4 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a = 1.52$ ampere e $I_b = 1.07$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0207}$ C $\boxed{0.0387}$ D $\boxed{0.0567}$ E $\boxed{0.0747}$ F $\boxed{0.0927}$

4) Una lamina metallica di forma cilindrica ha raggio r = 12.4 mm, spessore $\delta = 0.556$ mm (si noti $\delta << r$) e altezza h = 202 mm (si noti r << h). Sia $\sigma = 1.93 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.85$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A $\boxed{0}$ B $\boxed{1.57}$ C $\boxed{3.37}$ D $\boxed{5.17}$ E $\boxed{6.97}$ F $\boxed{8.77}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.01 cm e massa m=1.44 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.41 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.55 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.66$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.110 \end{bmatrix} \quad C \begin{bmatrix} 0.290 \end{bmatrix} \quad D \begin{bmatrix} 0.470 \end{bmatrix} \quad E \begin{bmatrix} 0.650 \end{bmatrix} \quad F \begin{bmatrix} 0.830 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.1 cm, raggio r=1.18 cm (si noti r<< h), spessore d=0.178 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.10\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.174$ tesla e $\tau=1.91$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 218 C 398 D 578 E 758 F 938

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{1.27 \times 10^{-3}} \quad C \ \boxed{3.07 \times 10^{-3}} \quad D \ \boxed{4.87 \times 10^{-3}} \quad E \ \boxed{6.67 \times 10^{-3}} \quad F \ \boxed{8.47 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.117$ m, sulla cui superficie è depositata una carica $Q = 1.45 \mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.45 \times 10^3 \text{ rad/s}$.

A 0 B 1.43 C 3.23 D 5.03 E 6.83 F 8.63

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.21 cm e b=1.35 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.59 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.52$ tesla, $B_y=1.28$ tesla e $B_z=1.79$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

 $A \boxed{0}$ $B \boxed{274}$ $C \boxed{454}$ $D \boxed{634}$ $E \boxed{814}$ $F \boxed{994}$

10) Una spira quadrata di lato a = 0.0137 m è percorsa da una corrente stazionaria I = 0.190 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A $\boxed{0}$ B $\boxed{0.157}$ C $\boxed{0.337}$ D $\boxed{0.517}$ E $\boxed{0.697}$ F $\boxed{0.877}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.43 nC, si muove con velocità | \vec{v} |= 1.84×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 159 C 339 D 519 E 699 F 879

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.40 cm. In ciascun filo circola nello stesso verso una corrente I=2.39 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.242}$ C $\boxed{0.422}$ D $\boxed{0.602}$ E $\boxed{0.782}$ F $\boxed{0.962}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=11.0 cm e b=0.588 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=56.2 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.82$ ampere e $I_b=1.90$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0115 \end{bmatrix} \quad C \begin{bmatrix} 0.0295 \end{bmatrix} \quad D \begin{bmatrix} 0.0475 \end{bmatrix} \quad E \begin{bmatrix} 0.0655 \end{bmatrix} \quad F \begin{bmatrix} 0.0835 \end{bmatrix}$

4) Una lamina metallica di forma cilindrica ha raggio r = 10.3 mm, spessore $\delta = 0.523$ mm (si noti $\delta << r$) e altezza h = 205 mm (si noti r << h). Sia $\sigma = 1.72 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.30$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.199 \end{bmatrix} \quad C \begin{bmatrix} 0.379 \end{bmatrix} \quad D \begin{bmatrix} 0.559 \end{bmatrix} \quad E \begin{bmatrix} 0.739 \end{bmatrix} \quad F \begin{bmatrix} 0.919 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.63 cm e massa m=1.51 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.40 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.37 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.41$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.165} \quad C \boxed{0.345} \quad D \boxed{0.525} \quad E \boxed{0.705} \quad F \boxed{0.885}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.6 cm, raggio r=1.82 cm (si noti r << h), spessore d=0.186 cm (si noti d << r) e conducibilità elettrica $\sigma=1.78\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.117$ tesla e $\tau=1.45$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 121 C 301 D 481 E 661 F 841

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0112}$ C $\boxed{0.0292}$ D $\boxed{0.0472}$ E $\boxed{0.0652}$ F $\boxed{0.0832}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.129$ m, sulla cui superficie è depositata una carica $Q = 1.45 \mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.24 \times 10^3 \text{ rad/s}$.

A 0 B 1.78 C 3.58 D 5.38 E 7.18 F 8.98

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.66 cm e b=1.35 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.88 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.87$ tesla, $B_y=1.77$ tesla e $B_z=1.58$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 102 C 282 D 462 E 642 F 822

10) Una spira quadrata di lato a = 0.0157 m è percorsa da una corrente stazionaria I = 0.174 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \ \boxed{0} \quad B \ \boxed{0.125} \quad C \ \boxed{0.305} \quad D \ \boxed{0.485} \quad E \ \boxed{0.665} \quad F \ \boxed{0.845}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.39 nC, si muove con velocità | \vec{v} |= 2.13×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 179 C 359 D 539 E 719 F 899

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.72 cm. In ciascun filo circola nello stesso verso una corrente I=1.51 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.192}$ C $\boxed{0.372}$ D $\boxed{0.552}$ E $\boxed{0.732}$ F $\boxed{0.912}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.8 cm e b=0.581 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=59.8 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.09$ ampere e $I_b=1.43$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0135 \end{bmatrix} \quad C \begin{bmatrix} 0.0315 \end{bmatrix} \quad D \begin{bmatrix} 0.0495 \end{bmatrix} \quad E \begin{bmatrix} 0.0675 \end{bmatrix} \quad F \begin{bmatrix} 0.0855 \end{bmatrix}$

4) Una lamina metallica di forma cilindrica ha raggio r = 12.4 mm, spessore $\delta = 0.549$ mm (si noti $\delta << r$) e altezza h = 208 mm (si noti r << h). Sia $\sigma = 1.90 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.05$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.147 \end{bmatrix} \quad C \begin{bmatrix} 0.327 \end{bmatrix} \quad D \begin{bmatrix} 0.507 \end{bmatrix} \quad E \begin{bmatrix} 0.687 \end{bmatrix} \quad F \begin{bmatrix} 0.867 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.62 cm e massa m=1.77 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.82 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.79 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.22$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.250} \quad C \boxed{0.430} \quad D \boxed{0.610} \quad E \boxed{0.790} \quad F \boxed{0.970}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.1 cm, raggio r=1.24 cm (si noti r<< h), spessore d=0.146 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.78\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.160$ tesla e $\tau=1.34$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{1.69 \times 10^{-3}} \quad C \ \boxed{3.49 \times 10^{-3}} \quad D \ \boxed{5.29 \times 10^{-3}} \quad E \ \boxed{7.09 \times 10^{-3}} \quad F \ \boxed{8.89 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.165$ m, sulla cui superficie è depositata una carica $Q = 1.37~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.92 \times 10^3 \text{ rad/s}$.

A 0 B 21.5 C 39.5 D 57.5 E 75.5 F 93.5

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.22 cm e b=1.11 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.38 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.41$ tesla, $B_y=1.67$ tesla e $B_z=1.74$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 188 C 368 D 548 E 728 F 908

10) Una spira quadrata di lato a = 0.0167 m è percorsa da una corrente stazionaria I = 0.147 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A $\boxed{0}$ B $\boxed{0.0276}$ C $\boxed{0.0456}$ D $\boxed{0.0636}$ E $\boxed{0.0816}$ F $\boxed{0.0996}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.31 nC, si muove con velocità | \vec{v} |= 2.12×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 253 C 433 D 613 E 793 F 973

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.96 cm. In ciascun filo circola nello stesso verso una corrente I=1.29 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.185}$ C $\boxed{0.365}$ D $\boxed{0.545}$ E $\boxed{0.725}$ F $\boxed{0.905}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a = 10.0 cm e b = 0.578 cm, (si noti b << a) sono disposte coassialmente ad una distanza h = 50.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a = 1.09$ ampere e $I_b = 1.41$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \boxed{0} B \boxed{0.0142} C \boxed{0.0322} D \boxed{0.0502} E \boxed{0.0682} F \boxed{0.0862}$

4) Una lamina metallica di forma cilindrica ha raggio r = 14.1 mm, spessore $\delta = 0.592$ mm (si noti $\delta << r$) e altezza h = 202 mm (si noti r << h). Sia $\sigma = 1.03 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.03$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.227 \end{bmatrix} \quad C \begin{bmatrix} 0.407 \end{bmatrix} \quad D \begin{bmatrix} 0.587 \end{bmatrix} \quad E \begin{bmatrix} 0.767 \end{bmatrix} \quad F \begin{bmatrix} 0.947 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.45 cm e massa m=1.49 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.81 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.04 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.83$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.195} \quad C \boxed{0.375} \quad D \boxed{0.555} \quad E \boxed{0.735} \quad F \boxed{0.915}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.5 cm, raggio r=1.41 cm (si noti r << h), spessore d=0.176 cm (si noti d << r) e conducibilità elettrica $\sigma=1.68\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.152$ tesla e $\tau=1.14$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 221 C 401 D 581 E 761 F 941

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A 0 B 0.0128 C 0.0308 D 0.0488 E 0.0668 F 0.0848

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.110$ m, sulla cui superficie è depositata una carica $Q = 1.19~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.88 \times 10^3 \text{ rad/s}$.

 $A \boxed{0}$ $B \boxed{2.72}$ $C \boxed{4.52}$ $D \boxed{6.32}$ $E \boxed{8.12}$ $F \boxed{9.92}$

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.77 cm e b=1.66 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.42 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.42$ tesla, $B_y=1.22$ tesla e $B_z=1.41$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 190 C 370 D 550 E 730 F 910

10) Una spira quadrata di lato a=0.0157 m è percorsa da una corrente stazionaria I=0.127 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A $\boxed{0}$ B $\boxed{0.0195}$ C $\boxed{0.0375}$ D $\boxed{0.0555}$ E $\boxed{0.0735}$ F $\boxed{0.0915}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.23 nC, si muove con velocità | \vec{v} |= 1.72×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- A 0 B 268 C 448 D 628 E 808 F 988
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.20 cm. In ciascun filo circola nello stesso verso una corrente I=1.85 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- $A \boxed{0} \quad B \boxed{0.177} \quad C \boxed{0.357} \quad D \boxed{0.537} \quad E \boxed{0.717} \quad F \boxed{0.897}$
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.3 cm e b=0.580 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=54.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.31$ ampere e $I_b=1.25$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \boxed{0} \quad B \boxed{0.0156} \quad C \boxed{0.0336} \quad D \boxed{0.0516} \quad E \boxed{0.0696} \quad F \boxed{0.0876}$
- 4) Una lamina metallica di forma cilindrica ha raggio r=14.7 mm, spessore $\delta=0.512$ mm (si noti $\delta << r$) e altezza h=203 mm (si noti r<< h). Sia $\sigma=1.78\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.58$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.
- A $\boxed{0}$ B $\boxed{1.63}$ C $\boxed{3.43}$ D $\boxed{5.23}$ E $\boxed{7.03}$ F $\boxed{8.83}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.70 cm e massa m=1.54 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.27 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.22 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.68$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- $A \boxed{0} \quad B \boxed{0.120} \quad C \boxed{0.300} \quad D \boxed{0.480} \quad E \boxed{0.660} \quad F \boxed{0.840}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.4 cm, raggio r=1.41 cm (si noti r<< h), spessore d=0.155 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.14\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.107$ tesla e $\tau=1.98$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

 $A \boxed{0} \quad B \boxed{160} \quad C \boxed{340} \quad D \boxed{520} \quad E \boxed{700} \quad F \boxed{880}$

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{1.31 \times 10^{-3}} \quad C \ \boxed{3.11 \times 10^{-3}} \quad D \ \boxed{4.91 \times 10^{-3}} \quad E \ \boxed{6.71 \times 10^{-3}} \quad F \ \boxed{8.51 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.156$ m, sulla cui superficie è depositata una carica $Q = 1.30~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.38 \times 10^3 \text{ rad/s}$.

A 0 B 13.1 C 31.1 D 49.1 E 67.1 F 85.1

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.13 cm e b=1.56 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.57 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.74$ tesla, $B_y=1.92$ tesla e $B_z=1.17$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 250 C 430 D 610 E 790 F 970

10) Una spira quadrata di lato a=0.0117 m è percorsa da una corrente stazionaria I=0.120 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.116 \end{bmatrix} \quad C \begin{bmatrix} 0.296 \end{bmatrix} \quad D \begin{bmatrix} 0.476 \end{bmatrix} \quad E \begin{bmatrix} 0.656 \end{bmatrix} \quad F \begin{bmatrix} 0.836 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.25 nC, si muove con velocità | \vec{v} |= 2.02×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- A 0 B 264 C 444 D 624 E 804 F 984
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.43 cm. In ciascun filo circola nello stesso verso una corrente I=2.14 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.6 cm e b=0.550 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=53.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.21$ ampere e $I_b=1.20$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \boxed{0} \quad B \boxed{0.0136} \quad C \boxed{0.0316} \quad D \boxed{0.0496} \quad E \boxed{0.0676} \quad F \boxed{0.0856}$
- 4) Una lamina metallica di forma cilindrica ha raggio r=14.5 mm, spessore $\delta=0.548$ mm (si noti $\delta << r$) e altezza h=204 mm (si noti r<< h). Sia $\sigma=1.57\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.84$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 2.01 \end{bmatrix} \quad C \begin{bmatrix} 3.81 \end{bmatrix} \quad D \begin{bmatrix} 5.61 \end{bmatrix} \quad E \begin{bmatrix} 7.41 \end{bmatrix} \quad F \begin{bmatrix} 9.21 \end{bmatrix}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.83 cm e massa m=1.12 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.98 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.90 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.10$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- $A \boxed{0} \quad B \boxed{0.190} \quad C \boxed{0.370} \quad D \boxed{0.550} \quad E \boxed{0.730} \quad F \boxed{0.910}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.5 cm, raggio r=1.20 cm (si noti r<< h), spessore d=0.148 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.67\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.176$ tesla e $\tau=1.06$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 252 C 432 D 612 E 792 F 972

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0114}$ C $\boxed{0.0294}$ D $\boxed{0.0474}$ E $\boxed{0.0654}$ F $\boxed{0.0834}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.142$ m, sulla cui superficie è depositata una carica $Q = 1.69~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.23 \times 10^3 \text{ rad/s}$.

A 0 B 12.6 C 30.6 D 48.6 E 66.6 F 84.6

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.59 cm e b=1.88 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.20 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.21$ tesla, $B_y=1.39$ tesla e $B_z=1.41$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 195 C 375 D 555 E 735 F 915

10) Una spira quadrata di lato a = 0.0178 m è percorsa da una corrente stazionaria I = 0.102 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \ \boxed{0} \quad B \ \boxed{0.0108} \quad C \ \boxed{0.0288} \quad D \ \boxed{0.0468} \quad E \ \boxed{0.0648} \quad F \ \boxed{0.0828}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.27 nC, si muove con velocità | \vec{v} |= 1.46×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- $A \boxed{0} \quad B \boxed{247} \quad C \boxed{427} \quad D \boxed{607} \quad E \boxed{787} \quad F \boxed{967}$
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.23 cm. In ciascun filo circola nello stesso verso una corrente I=1.06 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.7 cm e b=0.553 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=56.0 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.55$ ampere e $I_b=1.36$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \boxed{0} \quad B \boxed{0.0147} \quad C \boxed{0.0327} \quad D \boxed{0.0507} \quad E \boxed{0.0687} \quad F \boxed{0.0867}$
- 4) Una lamina metallica di forma cilindrica ha raggio r=13.6 mm, spessore $\delta=0.553$ mm (si noti $\delta << r$) e altezza h=203 mm (si noti r<< h). Sia $\sigma=1.82\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.08$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.127 \end{bmatrix} \quad C \begin{bmatrix} 0.307 \end{bmatrix} \quad D \begin{bmatrix} 0.487 \end{bmatrix} \quad E \begin{bmatrix} 0.667 \end{bmatrix} \quad F \begin{bmatrix} 0.847 \end{bmatrix}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.47 cm e massa m=1.30 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.75 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.23 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.35$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.135 \end{bmatrix} \quad C \begin{bmatrix} 0.315 \end{bmatrix} \quad D \begin{bmatrix} 0.495 \end{bmatrix} \quad E \begin{bmatrix} 0.675 \end{bmatrix} \quad F \begin{bmatrix} 0.855 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.2 cm, raggio r=1.92 cm (si noti r<< h), spessore d=0.158 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.75\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.180$ tesla e $\tau=1.78$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 265 C 445 D 625 E 805 F 985

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.196$ m, sulla cui superficie è depositata una carica Q = 1.19 μ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.19 \times 10^3$ rad/s.

A 0 B 16.3 C 34.3 D 52.3 E 70.3 F 88.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.74 cm e b=1.21 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.10 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.88$ tesla, $B_y=1.44$ tesla e $B_z=1.22$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 211 C 391 D 571 E 751 F 931

10) Una spira quadrata di lato a = 0.0191 m è percorsa da una corrente stazionaria I = 0.115 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.01 nC, si muove con velocità | \vec{v} |= 2.41×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 138 C 318 D 498 E 678 F 858

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.23 cm. In ciascun filo circola nello stesso verso una corrente I=1.44 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.137}$ C $\boxed{0.317}$ D $\boxed{0.497}$ E $\boxed{0.677}$ F $\boxed{0.857}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.2 cm e b=0.538 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=50.4 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.31$ ampere e $I_b=1.85$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \boxed{0} B \boxed{0.0269} C \boxed{0.0449} D \boxed{0.0629} E \boxed{0.0809} F \boxed{0.0989}$

4) Una lamina metallica di forma cilindrica ha raggio r = 11.7 mm, spessore $\delta = 0.506$ mm (si noti $\delta << r$) e altezza h = 201 mm (si noti r << h). Sia $\sigma = 1.69 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.23$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \boxed{0} B \boxed{0.103} C \boxed{0.283} D \boxed{0.463} E \boxed{0.643} F \boxed{0.823}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=2.00 cm e massa m=1.27 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.98 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.80 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.04$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.160} \quad C \boxed{0.340} \quad D \boxed{0.520} \quad E \boxed{0.700} \quad F \boxed{0.880}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.9 cm, raggio r=1.99 cm (si noti r<< h), spessore d=0.123 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.69\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.120$ tesla e $\tau=1.33$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 198 C 378 D 558 E 738 F 918

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{1.43 \times 10^{-3}} \quad C \ \boxed{3.23 \times 10^{-3}} \quad D \ \boxed{5.03 \times 10^{-3}} \quad E \ \boxed{6.83 \times 10^{-3}} \quad F \ \boxed{8.63 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.157$ m, sulla cui superficie è depositata una carica $Q = 1.65 \ \mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.55 \times 10^3 \text{ rad/s}$.

A 0 B 18.9 C 36.9 D 54.9 E 72.9 F 90.9

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.47 cm e b=1.80 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.30 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.98$ tesla, $B_y=1.50$ tesla e $B_z=1.41$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 254 C 434 D 614 E 794 F 974

10) Una spira quadrata di lato a = 0.0120 m è percorsa da una corrente stazionaria I = 0.174 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A $\boxed{0}$ B $\boxed{0.164}$ C $\boxed{0.344}$ D $\boxed{0.524}$ E $\boxed{0.704}$ F $\boxed{0.884}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.47 nC, si muove con velocità | \vec{v} |= 1.10×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 140 C 320 D 500 E 680 F 860

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=2.29 cm. In ciascun filo circola nello stesso verso una corrente I=2.14 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.216}$ C $\boxed{0.396}$ D $\boxed{0.576}$ E $\boxed{0.756}$ F $\boxed{0.936}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.1 cm e b=0.572 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=52.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.34$ ampere e $I_b=1.72$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \boxed{0} B \boxed{0.0202} C \boxed{0.0382} D \boxed{0.0562} E \boxed{0.0742} F \boxed{0.0922}$

4) Una lamina metallica di forma cilindrica ha raggio r = 12.6 mm, spessore $\delta = 0.532$ mm (si noti $\delta << r$) e altezza h = 205 mm (si noti r << h). Sia $\sigma = 1.56 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.27$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \boxed{0} B \boxed{0.251} C \boxed{0.431} D \boxed{0.611} E \boxed{0.791} F \boxed{0.971}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.51 cm e massa m=1.79 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.96 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.71 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.12$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \boxed{0} \quad B \boxed{0.200} \quad C \boxed{0.380} \quad D \boxed{0.560} \quad E \boxed{0.740} \quad F \boxed{0.920}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.5 cm, raggio r=1.35 cm (si noti r<< h), spessore d=0.166 cm (si noti d<< r) e conducibilità elettrica $\sigma=2.00\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.115$ tesla e $\tau=1.96$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 111 C 291 D 471 E 651 F 831

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{2.48 \times 10^{-3}}$ C $\boxed{4.28 \times 10^{-3}}$ D $\boxed{6.08 \times 10^{-3}}$ E $\boxed{7.88 \times 10^{-3}}$ F $\boxed{9.68 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.197$ m, sulla cui superficie è depositata una carica $Q = 1.65 \mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.37 \times 10^3 \text{ rad/s}$.

A 0 B 26.3 C 44.3 D 62.3 E 80.3 F 98.3

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.17 cm e b=1.39 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.17 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.41$ tesla, $B_y=1.44$ tesla e $B_z=1.81$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 175 C 355 D 535 E 715 F 895

10) Una spira quadrata di lato a = 0.0197 m è percorsa da una corrente stazionaria I = 0.155 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A $\boxed{0}$ B $\boxed{0.0170}$ C $\boxed{0.0350}$ D $\boxed{0.0530}$ E $\boxed{0.0710}$ F $\boxed{0.0890}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q = 1.46 nC, si muove con velocità $|\vec{v}| = 2.78 \times 10^3$ m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 145 C 325 D 505 E 685 F 865

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.51 cm. In ciascun filo circola nello stesso verso una corrente I=2.50 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.162}$ C $\boxed{0.342}$ D $\boxed{0.522}$ E $\boxed{0.702}$ F $\boxed{0.882}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.2 cm e b=0.577 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=53.1 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.48$ ampere e $I_b=1.28$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0194 \end{bmatrix} \quad C \begin{bmatrix} 0.0374 \end{bmatrix} \quad D \begin{bmatrix} 0.0554 \end{bmatrix} \quad E \begin{bmatrix} 0.0734 \end{bmatrix} \quad F \begin{bmatrix} 0.0914 \end{bmatrix}$

4) Una lamina metallica di forma cilindrica ha raggio r = 10.5 mm, spessore $\delta = 0.544$ mm (si noti $\delta << r$) e altezza h = 210 mm (si noti r << h). Sia $\sigma = 1.21 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.96$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.144 \end{bmatrix} \quad C \begin{bmatrix} 0.324 \end{bmatrix} \quad D \begin{bmatrix} 0.504 \end{bmatrix} \quad E \begin{bmatrix} 0.684 \end{bmatrix} \quad F \begin{bmatrix} 0.864 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.34 cm e massa m=1.88 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.95 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.49 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.84$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

A $\boxed{0}$ B $\boxed{0.200}$ C $\boxed{0.380}$ D $\boxed{0.560}$ E $\boxed{0.740}$ F $\boxed{0.920}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.9 cm, raggio r=1.14 cm (si noti r<< h), spessore d=0.121 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.10\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.153$ tesla e $\tau=1.38$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 256 C 436 D 616 E 796 F 976

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{2.09 \times 10^{-3}} \quad C \ \boxed{3.89 \times 10^{-3}} \quad D \ \boxed{5.69 \times 10^{-3}} \quad E \ \boxed{7.49 \times 10^{-3}} \quad F \ \boxed{9.29 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.150$ m, sulla cui superficie è depositata una carica $Q = 1.96~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.20 \times 10^3 \text{ rad/s}$.

A 0 B 15.9 C 33.9 D 51.9 E 69.9 F 87.9

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.48 cm e b=1.51 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.73 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.71$ tesla, $B_y=1.40$ tesla e $B_z=1.99$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 217 C 397 D 577 E 757 F 937

10) Una spira quadrata di lato a = 0.0146 m è percorsa da una corrente stazionaria I = 0.161 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A $\boxed{0}$ B $\boxed{0.125}$ C $\boxed{0.305}$ D $\boxed{0.485}$ E $\boxed{0.665}$ F $\boxed{0.845}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.53 nC, si muove con velocità | \vec{v} |= 1.19×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 215 C 395 D 575 E 755 F 935

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.07 cm. In ciascun filo circola nello stesso verso una corrente I=2.72 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A 0 B 1.08 C 2.88 D 4.68 E 6.48 F 8.28

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.5 cm e b=0.502 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=50.7 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.49$ ampere e $I_b=1.37$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

A $\boxed{0}$ B $\boxed{0.0181}$ C $\boxed{0.0361}$ D $\boxed{0.0541}$ E $\boxed{0.0721}$ F $\boxed{0.0901}$

4) Una lamina metallica di forma cilindrica ha raggio r = 14.8 mm, spessore $\delta = 0.544$ mm (si noti $\delta << r$) e altezza h = 209 mm (si noti r << h). Sia $\sigma = 1.79 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.36$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

A 0 B 1.36 C 3.16 D 4.96 E 6.76 F 8.56

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.00 cm e massa m=1.01 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.46 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.53 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.39$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.155 \end{bmatrix} \quad C \begin{bmatrix} 0.335 \end{bmatrix} \quad D \begin{bmatrix} 0.515 \end{bmatrix} \quad E \begin{bmatrix} 0.695 \end{bmatrix} \quad F \begin{bmatrix} 0.875 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=21.0 cm, raggio r=1.49 cm (si noti r<< h), spessore d=0.159 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.45\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.100$ tesla e $\tau=1.32$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 121 C 301 D 481 E 661 F 841

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{2.42 \times 10^{-3}} \quad C \ \boxed{4.22 \times 10^{-3}} \quad D \ \boxed{6.02 \times 10^{-3}} \quad E \ \boxed{7.82 \times 10^{-3}} \quad F \ \boxed{9.62 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.115$ m, sulla cui superficie è depositata una carica $Q = 1.40~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.30 \times 10^3 \text{ rad/s}$.

A 0 B 1.82 C 3.62 D 5.42 E 7.22 F 9.02

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.61 cm e b=1.02 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.06 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.37$ tesla, $B_y=1.11$ tesla e $B_z=1.10$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 120 C 300 D 480 E 660 F 840

10) Una spira quadrata di lato a=0.0123 m è percorsa da una corrente stazionaria I=0.164 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.62 nC, si muove con velocità | \vec{v} |= 1.25×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- $A \boxed{0} \quad B \boxed{257} \quad C \boxed{437} \quad D \boxed{617} \quad E \boxed{797} \quad F \boxed{977}$
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.97 cm. In ciascun filo circola nello stesso verso una corrente I=1.52 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- $A \boxed{0} \quad B \boxed{0.147} \quad C \boxed{0.327} \quad D \boxed{0.507} \quad E \boxed{0.687} \quad F \boxed{0.867}$
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.6 cm e b=0.535 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=50.5 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.93$ ampere e $I_b=1.35$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0264 \end{bmatrix} \quad C \begin{bmatrix} 0.0444 \end{bmatrix} \quad D \begin{bmatrix} 0.0624 \end{bmatrix} \quad E \begin{bmatrix} 0.0804 \end{bmatrix} \quad F \begin{bmatrix} 0.0984 \end{bmatrix}$
- 4) Una lamina metallica di forma cilindrica ha raggio r=10.3 mm, spessore $\delta=0.539$ mm (si noti $\delta << r$) e altezza h=209 mm (si noti r<< h). Sia $\sigma=1.45\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.36$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.187 \end{bmatrix} \quad C \begin{bmatrix} 0.367 \end{bmatrix} \quad D \begin{bmatrix} 0.547 \end{bmatrix} \quad E \begin{bmatrix} 0.727 \end{bmatrix} \quad F \begin{bmatrix} 0.907 \end{bmatrix}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.37 cm e massa m=1.03 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.80 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.37 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.35$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.135 \end{bmatrix} \quad C \begin{bmatrix} 0.315 \end{bmatrix} \quad D \begin{bmatrix} 0.495 \end{bmatrix} \quad E \begin{bmatrix} 0.675 \end{bmatrix} \quad F \begin{bmatrix} 0.855 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=21.0 cm, raggio r=1.78 cm (si noti r<< h), spessore d=0.165 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.56\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.180$ tesla e $\tau=1.71$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 178 C 358 D 538 E 718 F 898

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \boxed{0} B \boxed{0.0111} C \boxed{0.0291} D \boxed{0.0471} E \boxed{0.0651} F \boxed{0.0831}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.194$ m, sulla cui superficie è depositata una carica $Q = 1.91~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.81 \times 10^3 \text{ rad/s}$.

 $A \boxed{0} \quad B \boxed{21.0} \quad C \boxed{39.0} \quad D \boxed{57.0} \quad E \boxed{75.0} \quad F \boxed{93.0}$

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.17 cm e b=1.55 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.93 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.48$ tesla, $B_y=1.67$ tesla e $B_z=1.41$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 218 C 398 D 578 E 758 F 938

10) Una spira quadrata di lato a=0.0174 m è percorsa da una corrente stazionaria I=0.123 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

 $A \ \boxed{0} \quad B \ \boxed{0.0260} \quad C \ \boxed{0.0440} \quad D \ \boxed{0.0620} \quad E \ \boxed{0.0800} \quad F \ \boxed{0.0980}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=2.59 nC, si muove con velocità | \vec{v} |= 1.32×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.

A 0 B 206 C 386 D 566 E 746 F 926

2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.21 cm. In ciascun filo circola nello stesso verso una corrente I=2.70 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.

A $\boxed{0}$ B $\boxed{0.227}$ C $\boxed{0.407}$ D $\boxed{0.587}$ E $\boxed{0.767}$ F $\boxed{0.947}$

3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=10.5 cm e b=0.598 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=52.9 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.90$ ampere e $I_b=1.35$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.0130 \end{bmatrix} \quad C \begin{bmatrix} 0.0310 \end{bmatrix} \quad D \begin{bmatrix} 0.0490 \end{bmatrix} \quad E \begin{bmatrix} 0.0670 \end{bmatrix} \quad F \begin{bmatrix} 0.0850 \end{bmatrix}$

4) Una lamina metallica di forma cilindrica ha raggio r = 11.6 mm, spessore $\delta = 0.570$ mm (si noti $\delta << r$) e altezza h = 207 mm (si noti r << h). Sia $\sigma = 1.67 \times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0 \cos(\omega t)$ parallelo al suo asse, con $B_0 = 1.66$ tesla e $\omega = 1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t = 1 s.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.223 \end{bmatrix} \quad C \begin{bmatrix} 0.403 \end{bmatrix} \quad D \begin{bmatrix} 0.583 \end{bmatrix} \quad E \begin{bmatrix} 0.763 \end{bmatrix} \quad F \begin{bmatrix} 0.943 \end{bmatrix}$

5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.51 cm e massa m=1.32 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.22 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.30 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.03$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.155 \end{bmatrix} \quad C \begin{bmatrix} 0.335 \end{bmatrix} \quad D \begin{bmatrix} 0.515 \end{bmatrix} \quad E \begin{bmatrix} 0.695 \end{bmatrix} \quad F \begin{bmatrix} 0.875 \end{bmatrix}$

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.2 cm, raggio r=1.21 cm (si noti r<< h), spessore d=0.184 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.34\times 10^6$ (ohm · m)⁻¹. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.176$ tesla e $\tau=1.77$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 117 C 297 D 477 E 657 F 837

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

 $A \ \boxed{0} \quad B \ \boxed{1.46 \times 10^{-3}} \quad C \ \boxed{3.26 \times 10^{-3}} \quad D \ \boxed{5.06 \times 10^{-3}} \quad E \ \boxed{6.86 \times 10^{-3}} \quad F \ \boxed{8.66 \times 10^{-3}}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.182$ m, sulla cui superficie è depositata una carica $Q = 1.43~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.18 \times 10^3 \text{ rad/s}$.

A 0 B 16.8 C 34.8 D 52.8 E 70.8 F 88.8

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.56 cm e b=1.66 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.94 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.35$ tesla, $B_y=1.82$ tesla e $B_z=1.04$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A $\boxed{0}$ B $\boxed{22.5}$ C $\boxed{40.5}$ D $\boxed{58.5}$ E $\boxed{76.5}$ F $\boxed{94.5}$

10) Una spira quadrata di lato a=0.0120 m è percorsa da una corrente stazionaria I=0.137 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

- 1) Una carica elettrica di test, q=1.99 nC, si muove con velocità | \vec{v} |= 1.54×10^3 m/s. Su di essa agiscono le seguenti forze espresse in micronewton:
- a) $\vec{F} = 3\vec{i} \vec{j} + 2\vec{k}$ se $\vec{v} = |\vec{v}| \vec{i}$; b) $\vec{F} = 2\vec{i} 2\vec{j} \vec{k}$ se $\vec{v} = |\vec{v}| \vec{j}$; c) $\vec{F} = 2\vec{i} + \vec{k}$ se $\vec{v} = |\vec{v}| \vec{k}$. Nell'ipotesi che queste forze siano causate dalla combinazione di un campo elettrico e di un campo magnetico, determinare la componente E_z , in V/m, del campo elettrico.
- A 0 B 143 C 323 D 503 E 683 F 863
- 2) Tre lunghi fili rettilinei sono tra loro paralleli e disposti lungo i tre spigoli laterali di un parallelepipedo a base quadrata di lato l=1.75 cm. In ciascun filo circola nello stesso verso una corrente I=2.64 A. Determinare l'intensità del campo magnetico, in gauss, lungo il quarto spigolo nell'ipotesi di fili infiniti.
- $A \boxed{0} \quad B \boxed{0.100} \quad C \boxed{0.280} \quad D \boxed{0.460} \quad E \boxed{0.640} \quad F \boxed{0.820}$
- 3) Due spire circolari conduttrici A e B aventi raggi rispettivamente a=11.0 cm e b=0.510 cm, (si noti b << a) sono disposte coassialmente ad una distanza h=55.0 cm con i propri piani paralleli. Si supponga che nella spira maggiore A e minore B siano mantenute rispettivamente le correnti continue e di verso concorde $I_a=1.63$ ampere e $I_b=1.61$ ampere. Calcolare il flusso, in microgauss·m², del campo magnetico generato dalla spira B sulla spira A.
- $A \boxed{0} \quad B \boxed{0.0207} \quad C \boxed{0.0387} \quad D \boxed{0.0567} \quad E \boxed{0.0747} \quad F \boxed{0.0927}$
- 4) Una lamina metallica di forma cilindrica ha raggio r=14.1 mm, spessore $\delta=0.586$ mm (si noti $\delta << r$) e altezza h=209 mm (si noti r<< h). Sia $\sigma=1.85\times 10^6$ (ohm·m)⁻¹ la conducibilità elettrica del metallo. La lamina si trova in un campo magnetico esterno uniforme e oscillante $B_0\cos(\omega t)$ parallelo al suo asse, con $B_0=1.02$ tesla e $\omega=1$ rad/s. (Si assuma che il campo magnetico abbia la stessa simmetria cilindrica della lamina e quindi che gli assi di simmetria coincidano). Calcolare la potenza, in milliwatt, dissipata per effetto Joule nella lamina all'istante t=1 s.
- $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.195 \end{bmatrix} \quad C \begin{bmatrix} 0.375 \end{bmatrix} \quad D \begin{bmatrix} 0.555 \end{bmatrix} \quad E \begin{bmatrix} 0.735 \end{bmatrix} \quad F \begin{bmatrix} 0.915 \end{bmatrix}$
- 5) Un circuito rettangolare è costituito da due lati fissi, assimilabili a due rotaie parallele, sui quali possono scorrere senza attrito gli altri due lati, che sono mobili, di lunghezza a=1.12 cm e massa m=1.69 g ciascuno. Durante il moto dei lati mobili, il circuito rimane rettangolare. La resistenza del circuito è R=1.35 ohm, ed è costante, non dipende dal perimetro del rettangolo. Un campo magnetico costante e uniforme di intensità B=1.88 tesla è perpendicolare alla superficie del circuito. All'istante iniziale t=0 s la velocità del lato 1 è $v_{10}=1.46$ cm/s, mentre la velocità del lato 2 è nulla. Determinare la velocità asintotica, in cm/s, del lato 2.
- A 0 B 0.190 C 0.370 D 0.550 E 0.730 F 0.910

6) Si consideri una lamina metallica a forma di lungo cilindro avente altezza h=20.2 cm, raggio r=1.31 cm (si noti r<< h), spessore d=0.163 cm (si noti d<< r) e conducibilità elettrica $\sigma=1.73\times 10^6$ (ohm · m) $^{-1}$. La lamina si trova immersa in un campo magnetico esterno $\vec{B}_0(t)$, parallelo all'asse del cilindro. Per t>0 l'intensità campo magnetico esterno varia nel tempo secondo la legge $B_0(t)=B_0e^{-t/\tau}$, con $B_0=0.197$ tesla e $\tau=1.57$ s. Calcolare la densità superficiale di corrente azimutale, in ampere/m², indotta dalla variazione del campo magnetico all'istante $t=\tau$.

A 0 B 163 C 343 D 523 E 703 F 883

7) Nelle ipotesi dell'esercizio precedente, calcolare l'intensità del campo magnetico, in gauss, generato dalla corrente indotta all'istante $t = \tau$ (si approssimi la lamina cilindrica con un solenoide infinito).

A $\boxed{0}$ B $\boxed{0.0107}$ C $\boxed{0.0287}$ D $\boxed{0.0467}$ E $\boxed{0.0647}$ F $\boxed{0.0827}$

8) Determinare il modulo del momento di dipolo magnetico, in μ A · m², di un disco di raggio $r_0 = 0.108$ m, sulla cui superficie è depositata una carica $Q = 1.79~\mu$ C, con densità superficiale $\sigma(r) = kr$ e che ruoti attorno al proprio asse con velocità angolare $\omega = 1.61 \times 10^3 \text{ rad/s}$.

A 0 B 10.1 C 28.1 D 46.1 E 64.1 F 82.1

9) Una spira rettangolare giacente nel piano xy di un sistema di riferimento cartesiano, con i lati a=1.28 cm e b=1.16 cm posti paralleli rispettivamente agli assi cartesiani x e y, e percorsa da una corrente I=1.63 ampere, è immersa in un campo di induzione magnetica uniforme $\vec{B}=(B_x,B_y,B_z)$, con $B_x=1.78$ tesla, $B_y=1.43$ tesla e $B_z=1.01$ tesla. Calcolare la forza, in millinewton, alla quale è sottoposta la spira.

A 0 B 109 C 289 D 469 E 649 F 829

10) Una spira quadrata di lato a = 0.0160 m è percorsa da una corrente stazionaria I = 0.141 ampere. Determinare il campo magnetico, in gauss, al centro della spira.

A $\boxed{0}$ B $\boxed{0.0277}$ C $\boxed{0.0457}$ D $\boxed{0.0637}$ E $\boxed{0.0817}$ F $\boxed{0.0997}$