
## UNIVERSITÀ DEGLI STUDI DI PISA INGEGNERIA AEROSPAZIALE: CORSO DI FISICA GENERALE II E ELETTRONICA Prova n. 4 - 01/04/2017



A 0 B 1.73 C 3.53 D 5.33 E 7.13 F 8.93

2) Per il circuito dell' esercizio precedente, si calcoli la potenza istantanea dissipata in Watt al tempo  $t^* = RC$ .

A 0 B 11.0 C 29.0 D 47.0 E 65.0 F 83.0

3) Il circuito mostrato in figura, in cui  $R_1 = R_2 = R = 464 \Omega$ ,  $C = 155 \mu F$  ed  $L = R^2 C/2$ , è alimentato in continua da un generatore di f.e.m.  $\varepsilon = 51.3 \text{ V}$  e da un generatore di corrente  $I_0 = \varepsilon/R$ . Il condensatore è inizialmente scarico all' istante t = 0 allorché viene chiuso l' interruttore. Si determini la potenza istantanea in Watt erogata dal generatore di corrente a quell' istante.

A 0 B 17.0 C 35.0 D 53.0 E 71.0 F 89.0

4) In relazione al circuito dell' esercizio precedente, si calcoli l' energia in Joule immagazzinata a regime nel condensatore.

A  $\boxed{0}$  B  $\boxed{0.276}$  C  $\boxed{0.456}$  D  $\boxed{0.636}$  E  $\boxed{0.816}$  F  $\boxed{0.996}$ 

5) Per il circuito dell' esercizio 3, si calcoli il valor massimo della corrente in Ampère nel ramo dell' induttore.

A 0 B 0.143 C 0.323 D 0.503 E 0.683 F 0.863

6) Il circuito di figura, in cui  $C_1 = C_2 = C = 1.89~\mu\text{F}$ ,  $R = 24.2~\Omega$  ed  $L = 4R^2C$ , è alimentato da un generatore di f.e.m. alternata di ampiezza  $V_0 = 7.01~\text{V}$  e pulsazione  $\omega$  tale che esso sia in risonanza con il circuito ad interruttore aperto. Il circuito è inizialmente a regime con l' interruttore chiuso. Si calcoli la corrente in Ampère che attraversa il ramo dell' induttore all' istante t = 0 in cui l' interruttore viene aperto. (ATTENZIONE! Il generatore è sfasato di  $\pi/4$  rispetto all' istante di chiusura dell' interruttore, come mostrato in figura.)

 $A \boxed{0} B \boxed{0.102} C \boxed{0.282} D \boxed{0.462} E \boxed{0.642} F \boxed{0.822}$ 

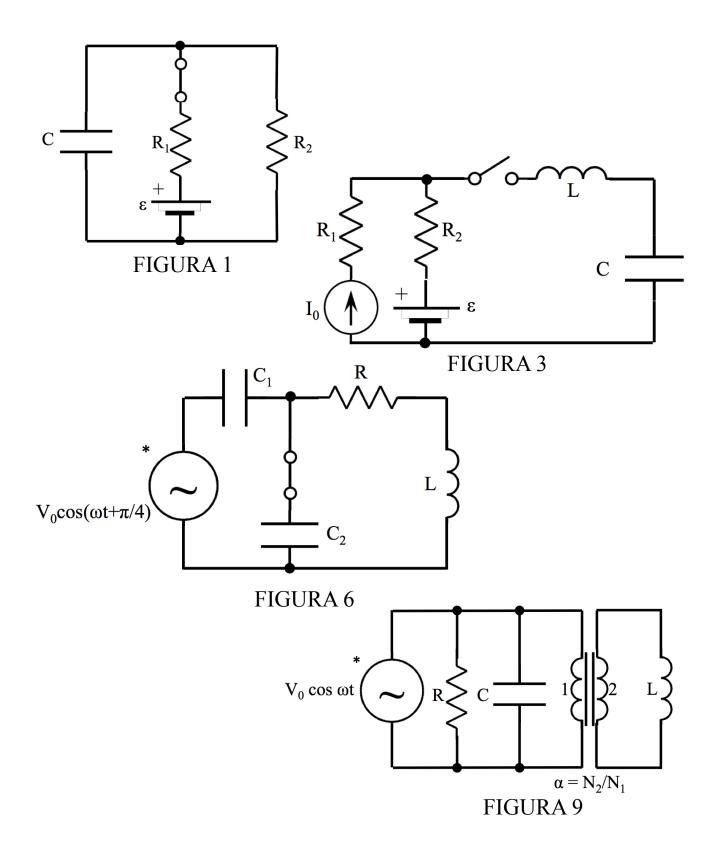
7) In merito al circuito precedente, si calcoli la potenza istantanea in mW assorbita dall' induttore allo stesso istante.

A 0 B 118 C 298 D 478 E 658 F 838

8) Per il circuito dell' esercizio 6, si calcoli la potenza media in Watt erogata dal generatore nel nuovo regime.

A 0 B 1.02 C 2.82 D 4.62 E 6.42 F 8.22

9) Un generatore di tensione alternata di ampiezza  $V_0 = 4.00$  V è in risonanza con il circuito mostrato in figura, in cui un primario con R = 3.27  $\Omega$  e C = 3.62  $\mu$ F è accoppiato ad un secondario con L = 85.6 mH mediante un trasformatore ideale con rapporto di trasformazione  $\alpha = N_2/N_1$ . Si calcoli la potenza media in Watt erogata a regime dal generatore.


 $A \boxed{0} \quad B \boxed{2.45} \quad C \boxed{4.25} \quad D \boxed{6.05} \quad E \boxed{7.85} \quad F \boxed{9.65}$ 

10) Per lo stesso circuito, si calcoli a regime l'ampiezza in mA della corrente nel secondario.

A 0 B 26.0 C 44.0 D 62.0 E 80.0 F 98.0

Testo n. 0

## FISICA GENERALE II ED ELETTRONICA Prova n. 4- 01/04/2017

