Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 100 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.20$ m e $\theta \ge \theta_0 = 0.885$ rad.

A 0 B 130 C 310 D 490 E 670 F 850

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 4.64 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 159 C 339 D 519 E 699 F 879

4) Al vertice di un cono retto con raggio di base $r_0 = 3.96$ m e altezza $h_0 = 2.22$ m, è collocata una carica elettrica $q_0 = 1.89$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 18.5 C 36.5 D 54.5 E 72.5 F 90.5

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (4.19, 0, 4.62)$ e $\vec{b} = (0, 4.00, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-1.22}$ C $\boxed{-3.02}$ D $\boxed{-4.82}$ E $\boxed{-6.62}$ F $\boxed{-8.42}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 32.7$ nC ed a = 3.62 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-15.9}$ C $\boxed{-33.9}$ D $\boxed{-51.9}$ E $\boxed{-69.9}$ F $\boxed{-87.9}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=3.13~{\rm Nm^2/C},\,b=8.54~{\rm Nm^2/C}$ e $r_0=4.74~{\rm m}.$ Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0.$

A 0 B 2.13 C 3.93 D 5.73 E 7.53 F 9.33

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.19$ N/C ed $x_0 = 2.99$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 13.8 C 31.8 D 49.8 E 67.8 F 85.8

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 4.42$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 3.24 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 239 C 419 D 599 E 779 F 959

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 1.19 C 2.99 D 4.79 E 6.59 F 8.39

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 236 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{2.67}$ $C \boxed{4.47}$ $D \boxed{6.27}$ $E \boxed{8.07}$ $F \boxed{9.87}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 1.54$ m e $\theta \ge \theta_0 = 0.439$ rad.

A 0 B 13.6 C 31.6 D 49.6 E 67.6 F 85.6

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.11 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

4) Al vertice di un cono retto con raggio di base $r_0 = 9.47$ m e altezza $h_0 = 2.96$ m, è collocata una carica elettrica $q_0 = 1.83$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 18.5 C 36.5 D 54.5 E 72.5 F 90.5

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (6.27, 0, 2.58)$ e $\vec{b} = (0, 4.33, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A 0 B 11.3 C 29.3 D 47.3 E 65.3 F 83.3

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 11.8$ nC ed a = 3.42 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-1.01}$ C $\boxed{-2.81}$ D $\boxed{-4.61}$ E $\boxed{-6.41}$ F $\boxed{-8.21}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=2.19 \text{ Nm}^2/\text{C}$, $b=3.42 \text{ Nm}^2/\text{C}$ e $r_0=3.82 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

 $A \boxed{0} B \boxed{0.206} C \boxed{0.386} D \boxed{0.566} E \boxed{0.746} F \boxed{0.926}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 2.74$ N/C ed $x_0 = 1.89$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 14.3 C 32.3 D 50.3 E 68.3 F 86.3

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 4.85$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr\cos\theta$, con k = 1.02 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 193 C 373 D 553 E 733 F 913

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.272 \end{bmatrix} \quad C \begin{bmatrix} 0.452 \end{bmatrix} \quad D \begin{bmatrix} 0.632 \end{bmatrix} \quad E \begin{bmatrix} 0.812 \end{bmatrix} \quad F \begin{bmatrix} 0.992 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 269 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 0.784$ m e $\theta \ge \theta_0 = 0.294$ rad.

 $A \boxed{0}$ $B \boxed{2.72}$ $C \boxed{4.52}$ $D \boxed{6.32}$ $E \boxed{8.12}$ $F \boxed{9.92}$

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 3.49 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 2.30 C 4.10 D 5.90 E 7.70 F 9.50

4) Al vertice di un cono retto con raggio di base $r_0 = 5.23$ m e altezza $h_0 = 1.27$ m, è collocata una carica elettrica $q_0 = 1.45$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 26.6 C 44.6 D 62.6 E 80.6 F 98.6

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (2.82, 0, 3.44)$ e $\vec{b} = (0, 2.77, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-1.21}$ C $\boxed{-3.01}$ D $\boxed{-4.81}$ E $\boxed{-6.61}$ F $\boxed{-8.41}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 13.2$ nC ed a = 1.11 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-14.1}$ C $\boxed{-32.1}$ D $\boxed{-50.1}$ E $\boxed{-68.1}$ F $\boxed{-86.1}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=4.54 \text{ Nm}^2/\text{C}$, $b=5.63 \text{ Nm}^2/\text{C}$ e $r_0=4.51 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

 $A \boxed{0} B \boxed{0.114} C \boxed{0.294} D \boxed{0.474} E \boxed{0.654} F \boxed{0.834}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 2.93$ N/C ed $x_0 = 1.01$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 10.5 C 28.5 D 46.5 E 64.5 F 82.5

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.56$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 4.69 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 183 C 363 D 543 E 723 F 903

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0}$ $B \boxed{1.12}$ $C \boxed{2.92}$ $D \boxed{4.72}$ $E \boxed{6.52}$ $F \boxed{8.32}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r,θ,ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ,ϕ,z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x,y,z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 267 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{1.69}$ $C \boxed{3.49}$ $D \boxed{5.29}$ $E \boxed{7.09}$ $F \boxed{8.89}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 0.509$ m e $\theta \ge \theta_0 = 0.378$ rad.

A 0 B 1.64 C 3.44 D 5.24 E 7.04 F 8.84

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.65 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

4) Al vertice di un cono retto con raggio di base $r_0 = 6.62$ m e altezza $h_0 = 4.33$ m, è collocata una carica elettrica $q_0 = 3.17$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 27.0 C 45.0 D 63.0 E 81.0 F 99.0

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (1.64, 0, 2.82)$ e $\vec{b} = (0, 1.74, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-1.45}$ C $\boxed{-3.25}$ D $\boxed{-5.05}$ E $\boxed{-6.85}$ F $\boxed{-8.65}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 33.1$ nC ed a = 3.56 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-16.6}$ C $\boxed{-34.6}$ D $\boxed{-52.6}$ E $\boxed{-70.6}$ F $\boxed{-88.6}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=7.80 \text{ Nm}^2/\text{C}$, $b=4.90 \text{ Nm}^2/\text{C}$ e $r_0=4.21 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-1.45}$ C $\boxed{-3.25}$ D $\boxed{-5.05}$ E $\boxed{-6.85}$ F $\boxed{-8.65}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 3.21$ N/C ed $x_0 = 2.80$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 11.3 C 29.3 D 47.3 E 65.3 F 83.3

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.24$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 3.11 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 133 C 313 D 493 E 673 F 853

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A $\boxed{0}$ B $\boxed{0.255}$ C $\boxed{0.435}$ D $\boxed{0.615}$ E $\boxed{0.795}$ F $\boxed{0.975}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 455 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.62$ m e $\theta \ge \theta_0 = 0.785$ rad.

A 0 B 276 C 456 D 636 E 816 F 996

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.67$ nC/m³. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 110 C 290 D 470 E 650 F 830

4) Al vertice di un cono retto con raggio di base $r_0 = 5.63$ m e altezza $h_0 = 4.52$ m, è collocata una carica elettrica $q_0 = 3.88$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 27.9 C 45.9 D 63.9 E 81.9 F 99.9

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (5.69, 0, 9.46)$ e $\vec{b} = (0, 3.53, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-2.21}$ C $\boxed{-4.01}$ D $\boxed{-5.81}$ E $\boxed{-7.61}$ F $\boxed{-9.41}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 45.4$ nC ed a = 1.01 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-103}$ C $\boxed{-283}$ D $\boxed{-463}$ E $\boxed{-643}$ F $\boxed{-823}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=9.66 \text{ Nm}^2/\text{C}$, $b=9.76 \text{ Nm}^2/\text{C}$ e $r_0=3.45 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{0.0204}$ C $\boxed{0.0384}$ D $\boxed{0.0564}$ E $\boxed{0.0744}$ F $\boxed{0.0924}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.62$ N/C ed $x_0 = 3.96$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 11.5 C 29.5 D 47.5 E 65.5 F 83.5

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.63$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 4.58 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 109 C 289 D 469 E 649 F 829

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A $\boxed{0}$ B $\boxed{0.236}$ C $\boxed{0.416}$ D $\boxed{0.596}$ E $\boxed{0.776}$ F $\boxed{0.956}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 356 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.72$ m e $\theta \ge \theta_0 = 0.893$ rad.

A 0 B 102 C 282 D 462 E 642 F 822

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 4.18 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 214 C 394 D 574 E 754 F 934

4) Al vertice di un cono retto con raggio di base $r_0 = 3.44$ m e altezza $h_0 = 2.81$ m, è collocata una carica elettrica $q_0 = 1.27$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 26.3 C 44.3 D 62.3 E 80.3 F 98.3

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (7.02, 0, 3.92)$ e $\vec{b} = (0, 2.33, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A 0 B 1.51 C 3.31 D 5.11 E 6.91 F 8.71

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 11.8$ nC ed a = 1.24 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-12.8}$ C $\boxed{-30.8}$ D $\boxed{-48.8}$ E $\boxed{-66.8}$ F $\boxed{-84.8}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=6.03 \text{ Nm}^2/\text{C}$, $b=8.85 \text{ Nm}^2/\text{C}$ e $r_0=2.43 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A 0 B 2.43 C 4.23 D 6.03 E 7.83 F 9.63

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 2.87$ N/C ed $x_0 = 3.94$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 1.76 C 3.56 D 5.36 E 7.16 F 8.96

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.46$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 2.33 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 117 C 297 D 477 E 657 F 837

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.165 \end{bmatrix} \quad C \begin{bmatrix} 0.345 \end{bmatrix} \quad D \begin{bmatrix} 0.525 \end{bmatrix} \quad E \begin{bmatrix} 0.705 \end{bmatrix} \quad F \begin{bmatrix} 0.885 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 140 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{1.92}$ $C \boxed{3.72}$ $D \boxed{5.52}$ $E \boxed{7.32}$ $F \boxed{9.12}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 2.66$ m e $\theta \ge \theta_0 = 0.400$ rad.

A $\boxed{0}$ B $\boxed{22.0}$ C $\boxed{40.0}$ D $\boxed{58.0}$ E $\boxed{76.0}$ F $\boxed{94.0}$

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 4.95 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 17.6 C 35.6 D 53.6 E 71.6 F 89.6

4) Al vertice di un cono retto con raggio di base $r_0 = 9.88$ m e altezza $h_0 = 4.16$ m, è collocata una carica elettrica $q_0 = 1.43$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 13.4 C 31.4 D 49.4 E 67.4 F 85.4

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (6.67, 0, 1.72)$ e $\vec{b} = (0, 1.99, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

 $A \boxed{0} \quad B \boxed{1.57} \quad C \boxed{3.37} \quad D \boxed{5.17} \quad E \boxed{6.97} \quad F \boxed{8.77}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 28.2$ nC ed a = 2.51 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-10.4}$ C $\boxed{-28.4}$ D $\boxed{-46.4}$ E $\boxed{-64.4}$ F $\boxed{-82.4}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=7.18 \text{ Nm}^2/\text{C}$, $b=6.66 \text{ Nm}^2/\text{C}$ e $r_0=4.30 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.15$ N/C ed $x_0 = 2.89$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 2.11 C 3.91 D 5.71 E 7.51 F 9.31

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.50$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr\cos\theta$, con k = 1.71 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 139 C 319 D 499 E 679 F 859

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.201 \end{bmatrix} \quad C \begin{bmatrix} 0.381 \end{bmatrix} \quad D \begin{bmatrix} 0.561 \end{bmatrix} \quad E \begin{bmatrix} 0.741 \end{bmatrix} \quad F \begin{bmatrix} 0.921 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 301 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{2.60}$ $C \boxed{4.40}$ $D \boxed{6.20}$ $E \boxed{8.00}$ $F \boxed{9.80}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 0.727$ m e $\theta \ge \theta_0 = 0.759$ rad.

 $A \boxed{0} \quad B \boxed{1.47} \quad C \boxed{3.27} \quad D \boxed{5.07} \quad E \boxed{6.87} \quad F \boxed{8.67}$

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.78 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 17.1 C 35.1 D 53.1 E 71.1 F 89.1

4) Al vertice di un cono retto con raggio di base $r_0 = 4.03$ m e altezza $h_0 = 2.49$ m, è collocata una carica elettrica $q_0 = 3.97$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 106 C 286 D 466 E 646 F 826

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (7.33, 0, 9.87)$ e $\vec{b} = (0, 1.90, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-1.61}$ C $\boxed{-3.41}$ D $\boxed{-5.21}$ E $\boxed{-7.01}$ F $\boxed{-8.81}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 30.3$ nC ed a = 3.73 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-13.8}$ C $\boxed{-31.8}$ D $\boxed{-49.8}$ E $\boxed{-67.8}$ F $\boxed{-85.8}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=9.90 \text{ Nm}^2/\text{C}$, $b=2.56 \text{ Nm}^2/\text{C}$ e $r_0=2.75 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-1.39}$ C $\boxed{-3.19}$ D $\boxed{-4.99}$ E $\boxed{-6.79}$ F $\boxed{-8.59}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.40$ N/C ed $x_0 = 1.26$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 16.3 C 34.3 D 52.3 E 70.3 F 88.3

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.16$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 1.01 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 141 C 321 D 501 E 681 F 861

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A $\boxed{0}$ B $\boxed{0.0167}$ C $\boxed{0.0347}$ D $\boxed{0.0527}$ E $\boxed{0.0707}$ F $\boxed{0.0887}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r,θ,ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ,ϕ,z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x,y,z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 304 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 2.68 C 4.48 D 6.28 E 8.08 F 9.88

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.48$ m e $\theta \ge \theta_0 = 0.292$ rad.

A 0 B 265 C 445 D 625 E 805 F 985

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 3.24 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 21.5 C 39.5 D 57.5 E 75.5 F 93.5

4) Al vertice di un cono retto con raggio di base $r_0 = 4.05$ m e altezza $h_0 = 1.34$ m, è collocata una carica elettrica $q_0 = 2.36$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 19.4 C 37.4 D 55.4 E 73.4 F 91.4

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a}=(7.88,0,2.54)$ e $\vec{b}=(0,3.18,0)$, entrambi applicati nel punto P di coordinate (p,0,p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c}=\vec{a}\times\vec{b}$.

 $A \ \boxed{0} \quad B \ \boxed{12.0} \quad C \ \boxed{30.0} \quad D \ \boxed{48.0} \quad E \ \boxed{66.0} \quad F \ \boxed{84.0}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 32.5$ nC ed a = 2.23 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-23.5}$ C $\boxed{-41.5}$ D $\boxed{-59.5}$ E $\boxed{-77.5}$ F $\boxed{-95.5}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=3.08~{\rm Nm^2/C},\,b=1.04~{\rm Nm^2/C}$ e $r_0=4.55~{\rm m}.$ Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0.$

A $\boxed{0}$ B $\boxed{-0.152}$ C $\boxed{-0.332}$ D $\boxed{-0.512}$ E $\boxed{-0.692}$ F $\boxed{-0.872}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 3.21$ N/C ed $x_0 = 1.36$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 23.2 C 41.2 D 59.2 E 77.2 F 95.2

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 4.99$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr\cos\theta$, con k = 4.72 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 179 C 359 D 539 E 719 F 899

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 2.21 C 4.01 D 5.81 E 7.61 F 9.41

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 419 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 11.1 C 29.1 D 47.1 E 65.1 F 83.1

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 1.42$ m e $\theta \ge \theta_0 = 0.814$ rad.

A 0 B 26.0 C 44.0 D 62.0 E 80.0 F 98.0

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.66$ nC/m³. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 17.6 C 35.6 D 53.6 E 71.6 F 89.6

4) Al vertice di un cono retto con raggio di base $r_0 = 5.33$ m e altezza $h_0 = 4.57$ m, è collocata una carica elettrica $q_0 = 2.74$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 18.0 C 36.0 D 54.0 E 72.0 F 90.0

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (9.01, 0, 7.88)$ e $\vec{b} = (0, 3.22, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

 $A \boxed{0} \quad B \boxed{2.57} \quad C \boxed{4.37} \quad D \boxed{6.17} \quad E \boxed{7.97} \quad F \boxed{9.77}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 22.4$ nC ed a = 1.64 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-16.9}$ C $\boxed{-34.9}$ D $\boxed{-52.9}$ E $\boxed{-70.9}$ F $\boxed{-88.9}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=6.79 \text{ Nm}^2/\text{C}$, $b=7.74 \text{ Nm}^2/\text{C}$ e $r_0=4.59 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

 $A \boxed{0} B \boxed{0.219} C \boxed{0.399} D \boxed{0.579} E \boxed{0.759} F \boxed{0.939}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 2.24$ N/C ed $x_0 = 3.41$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 1.06 C 2.86 D 4.66 E 6.46 F 8.26

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 1.94$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 4.06 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 181 C 361 D 541 E 721 F 901

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0} \quad B \boxed{0.108} \quad C \boxed{0.288} \quad D \boxed{0.468} \quad E \boxed{0.648} \quad F \boxed{0.828}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 291 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{2.33}$ $C \boxed{4.13}$ $D \boxed{5.93}$ $E \boxed{7.73}$ $F \boxed{9.53}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.75$ m e $\theta \ge \theta_0 = 0.616$ rad.

A 0 B 118 C 298 D 478 E 658 F 838

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 4.76$ nC/m³. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 135 C 315 D 495 E 675 F 855

4) Al vertice di un cono retto con raggio di base $r_0 = 6.44$ m e altezza $h_0 = 1.46$ m, è collocata una carica elettrica $q_0 = 3.62$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 159 C 339 D 519 E 699 F 879

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (1.92, 0, 5.33)$ e $\vec{b} = (0, 4.83, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-11.6}$ C $\boxed{-29.6}$ D $\boxed{-47.6}$ E $\boxed{-65.6}$ F $\boxed{-83.6}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 10.6$ nC ed a = 2.20 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-13.9}$ C $\boxed{-31.9}$ D $\boxed{-49.9}$ E $\boxed{-67.9}$ F $\boxed{-85.9}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=8.60 \text{ Nm}^2/\text{C}$, $b=1.02 \text{ Nm}^2/\text{C}$ e $r_0=2.95 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

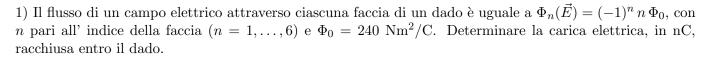
A $\boxed{0}$ B $\boxed{-2.31}$ C $\boxed{-4.11}$ D $\boxed{-5.91}$ E $\boxed{-7.71}$ F $\boxed{-9.51}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 2.75$ N/C ed $x_0 = 4.52$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 2.38 C 4.18 D 5.98 E 7.78 F 9.58


9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.70$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 2.32 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 119 C 299 D 479 E 659 F 839

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 0.138 C 0.318 D 0.498 E 0.678 F 0.858

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

A 0 B 2.78 C 4.58 D 6.38 E 8.18 F 9.98

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 1.73$ m e $\theta \ge \theta_0 = 0.486$ rad.

A 0 B 21.8 C 39.8 D 57.8 E 75.8 F 93.8

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 1.95 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 13.1 C 31.1 D 49.1 E 67.1 F 85.1

4) Al vertice di un cono retto con raggio di base $r_0 = 4.33$ m e altezza $h_0 = 2.09$ m, è collocata una carica elettrica $q_0 = 1.45$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 10.3 C 28.3 D 46.3 E 64.3 F 82.3

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (7.37, 0, 2.36)$ e $\vec{b} = (0, 3.99, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A 0 B 14.1 C 32.1 D 50.1 E 68.1 F 86.1

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 14.5$ nC ed a = 4.17 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-1.70}$ C $\boxed{-3.50}$ D $\boxed{-5.30}$ E $\boxed{-7.10}$ F $\boxed{-8.90}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=4.40 \text{ Nm}^2/\text{C}$, $b=5.06 \text{ Nm}^2/\text{C}$ e $r_0=4.95 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A 0 B 0.238 C 0.418 D 0.598 E 0.778 F 0.958

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.28$ N/C ed $x_0 = 4.70$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 1.75 C 3.55 D 5.35 E 7.15 F 8.95

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.03$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 1.19 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 127 C 307 D 487 E 667 F 847

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0} \quad B \boxed{0.206} \quad C \boxed{0.386} \quad D \boxed{0.566} \quad E \boxed{0.746} \quad F \boxed{0.926}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 439 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 11.7 C 29.7 D 47.7 E 65.7 F 83.7

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.14$ m e $\theta \ge \theta_0 = 0.906$ rad.

A 0 B 216 C 396 D 576 E 756 F 936

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 3.15 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 144 C 324 D 504 E 684 F 864

4) Al vertice di un cono retto con raggio di base $r_0 = 6.73$ m e altezza $h_0 = 2.91$ m, è collocata una carica elettrica $q_0 = 4.61$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 157 C 337 D 517 E 697 F 877

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (1.45, 0, 9.86)$ e $\vec{b} = (0, 2.66, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-15.8}$ C $\boxed{-33.8}$ D $\boxed{-51.8}$ E $\boxed{-69.8}$ F $\boxed{-87.8}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 12.6$ nC ed a = 1.39 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-23.4}$ C $\boxed{-41.4}$ D $\boxed{-59.4}$ E $\boxed{-77.4}$ F $\boxed{-95.4}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=8.58 \text{ Nm}^2/\text{C}$, $b=7.61 \text{ Nm}^2/\text{C}$ e $r_0=2.71 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-1.17}$ C $\boxed{-2.97}$ D $\boxed{-4.77}$ E $\boxed{-6.57}$ F $\boxed{-8.37}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 2.47$ N/C ed $x_0 = 4.03$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 2.43 C 4.23 D 6.03 E 7.83 F 9.63

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.17$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 4.14 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 123 C 303 D 483 E 663 F 843

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0} B \boxed{0.243} C \boxed{0.423} D \boxed{0.603} E \boxed{0.783} F \boxed{0.963}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 376 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{2.79}$ $C \boxed{4.59}$ $D \boxed{6.39}$ $E \boxed{8.19}$ $F \boxed{9.99}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.94$ m e $\theta \ge \theta_0 = 0.545$ rad.

A 0 B 144 C 324 D 504 E 684 F 864

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 1.29 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 12.6 C 30.6 D 48.6 E 66.6 F 84.6

4) Al vertice di un cono retto con raggio di base $r_0 = 8.63$ m e altezza $h_0 = 4.53$ m, è collocata una carica elettrica $q_0 = 3.95$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 119 C 299 D 479 E 659 F 839

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (7.33, 0, 9.98)$ e $\vec{b} = (0, 1.64, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} -1.27 \end{bmatrix} \quad C \begin{bmatrix} -3.07 \end{bmatrix} \quad D \begin{bmatrix} -4.87 \end{bmatrix} \quad E \begin{bmatrix} -6.67 \end{bmatrix} \quad F \begin{bmatrix} -8.47 \end{bmatrix}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 37.6$ nC ed a = 1.71 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-27.7}$ C $\boxed{-45.7}$ D $\boxed{-63.7}$ E $\boxed{-81.7}$ F $\boxed{-99.7}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=3.46 \text{ Nm}^2/\text{C}$, $b=8.95 \text{ Nm}^2/\text{C}$ e $r_0=4.32 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A 0 B 2.60 C 4.40 D 6.20 E 8.00 F 9.80

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 3.11$ N/C ed $x_0 = 1.93$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 15.8 C 33.8 D 51.8 E 69.8 F 87.8

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 1.04$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr\cos\theta$, con k = 4.57 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 139 C 319 D 499 E 679 F 859

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0} \quad B \boxed{0.0210} \quad C \boxed{0.0390} \quad D \boxed{0.0570} \quad E \boxed{0.0750} \quad F \boxed{0.0930}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 312 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 1.09 C 2.89 D 4.69 E 6.49 F 8.29

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 1.65$ m e $\theta \ge \theta_0 = 0.363$ rad.

 $A \boxed{0}$ $B \boxed{18.1}$ $C \boxed{36.1}$ $D \boxed{54.1}$ $E \boxed{72.1}$ $F \boxed{90.1}$

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 1.56$ nC/m³. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 2.19 C 3.99 D 5.79 E 7.59 F 9.39

4) Al vertice di un cono retto con raggio di base $r_0 = 3.63$ m e altezza $h_0 = 4.96$ m, è collocata una carica elettrica $q_0 = 1.59$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 17.3 C 35.3 D 53.3 E 71.3 F 89.3

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (2.75, 0, 7.41)$ e $\vec{b} = (0, 3.53, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-11.6}$ C $\boxed{-29.6}$ D $\boxed{-47.6}$ E $\boxed{-65.6}$ F $\boxed{-83.6}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 47.9$ nC ed a = 3.03 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-15.2}$ C $\boxed{-33.2}$ D $\boxed{-51.2}$ E $\boxed{-69.2}$ F $\boxed{-87.2}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=6.95 \text{ Nm}^2/\text{C}$, $b=5.91 \text{ Nm}^2/\text{C}$ e $r_0=4.72 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

 $A \boxed{0} \quad B \boxed{-0.233} \quad C \boxed{-0.413} \quad D \boxed{-0.593} \quad E \boxed{-0.773} \quad F \boxed{-0.953}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 2.13$ N/C ed $x_0 = 2.42$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 1.45 C 3.25 D 5.05 E 6.85 F 8.65

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.81$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 2.03 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 219 C 399 D 579 E 759 F 939

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.122 \end{bmatrix} \quad C \begin{bmatrix} 0.302 \end{bmatrix} \quad D \begin{bmatrix} 0.482 \end{bmatrix} \quad E \begin{bmatrix} 0.662 \end{bmatrix} \quad F \begin{bmatrix} 0.842 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 213 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{2.06}$ $C \boxed{3.86}$ $D \boxed{5.66}$ $E \boxed{7.46}$ $F \boxed{9.26}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.09$ m e $\theta \ge \theta_0 = 0.385$ rad.

 $A \boxed{0}$ $B \boxed{127}$ $C \boxed{307}$ $D \boxed{487}$ $E \boxed{667}$ $F \boxed{847}$

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.24$ nC/m³. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 17.4 C 35.4 D 53.4 E 71.4 F 89.4

4) Al vertice di un cono retto con raggio di base $r_0 = 4.85$ m e altezza $h_0 = 2.61$ m, è collocata una carica elettrica $q_0 = 1.79$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 17.2 C 35.2 D 53.2 E 71.2 F 89.2

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (4.46, 0, 7.13)$ e $\vec{b} = (0, 1.14, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} -2.15 \end{bmatrix} \quad C \begin{bmatrix} -3.95 \end{bmatrix} \quad D \begin{bmatrix} -5.75 \end{bmatrix} \quad E \begin{bmatrix} -7.55 \end{bmatrix} \quad F \begin{bmatrix} -9.35 \end{bmatrix}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 35.8$ nC ed a = 2.60 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-15.7}$ C $\boxed{-33.7}$ D $\boxed{-51.7}$ E $\boxed{-69.7}$ F $\boxed{-87.7}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=5.36 \text{ Nm}^2/\text{C}$, $b=3.40 \text{ Nm}^2/\text{C}$ e $r_0=3.37 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-1.53}$ C $\boxed{-3.33}$ D $\boxed{-5.13}$ E $\boxed{-6.93}$ F $\boxed{-8.73}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.13$ N/C ed $x_0 = 4.51$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 2.46 C 4.26 D 6.06 E 7.86 F 9.66

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 4.79$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 4.48 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 125 C 305 D 485 E 665 F 845

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 1.93 C 3.73 D 5.53 E 7.33 F 9.13

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r,θ,ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ,ϕ,z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x,y,z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 209 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{1.95}$ $C \boxed{3.75}$ $D \boxed{5.55}$ $E \boxed{7.35}$ $F \boxed{9.15}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.14$ m e $\theta \ge \theta_0 = 0.126$ rad.

A 0 B 221 C 401 D 581 E 761 F 941

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 1.31 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 1.53 C 3.33 D 5.13 E 6.93 F 8.73

4) Al vertice di un cono retto con raggio di base $r_0 = 3.15$ m e altezza $h_0 = 3.68$ m, è collocata una carica elettrica $q_0 = 2.97$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 22.3 C 40.3 D 58.3 E 76.3 F 94.3

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (3.53, 0, 5.57)$ e $\vec{b} = (0, 4.30, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-2.60}$ C $\boxed{-4.40}$ D $\boxed{-6.20}$ E $\boxed{-8.00}$ F $\boxed{-9.80}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 39.3$ nC ed a = 1.38 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-131}$ C $\boxed{-311}$ D $\boxed{-491}$ E $\boxed{-671}$ F $\boxed{-851}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_0^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=6.62~\mathrm{Nm^2/C},\,b=6.42~\mathrm{Nm^2/C}$ e $r_0=4.30~\mathrm{m}.$ Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0.$

 $A \boxed{0} \quad B \boxed{-0.0238} \quad C \boxed{-0.0418} \quad D \boxed{-0.0598} \quad E \boxed{-0.0778} \quad F \boxed{-0.0958}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.20$ N/C ed $x_0 = 1.01$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 11.7 C 29.7 D 47.7 E 65.7 F 83.7

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.75$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr\cos\theta$, con k = 1.17 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 185 C 365 D 545 E 725 F 905

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A $\boxed{0}$ B $\boxed{0.130}$ C $\boxed{0.310}$ D $\boxed{0.490}$ E $\boxed{0.670}$ F $\boxed{0.850}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 327 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 1.49 C 3.29 D 5.09 E 6.89 F 8.69

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 0.780$ m e $\theta \ge \theta_0 = 0.142$ rad.

A 0 B 2.48 C 4.28 D 6.08 E 7.88 F 9.68

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 4.50 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

4) Al vertice di un cono retto con raggio di base $r_0 = 3.04$ m e altezza $h_0 = 4.47$ m, è collocata una carica elettrica $q_0 = 1.55$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 15.2 C 33.2 D 51.2 E 69.2 F 87.2

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (4.22, 0, 7.24)$ e $\vec{b} = (0, 1.43, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-1.25}$ C $\boxed{-3.05}$ D $\boxed{-4.85}$ E $\boxed{-6.65}$ F $\boxed{-8.45}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 26.1$ nC ed a = 2.64 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-23.8}$ C $\boxed{-41.8}$ D $\boxed{-59.8}$ E $\boxed{-77.8}$ F $\boxed{-95.8}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=6.43 \text{ Nm}^2/\text{C}$, $b=3.03 \text{ Nm}^2/\text{C}$ e $r_0=3.01 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-1.52}$ C $\boxed{-3.32}$ D $\boxed{-5.12}$ E $\boxed{-6.92}$ F $\boxed{-8.72}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 3.77$ N/C ed $x_0 = 2.52$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

 $A \boxed{0}$ $B \boxed{14.7}$ $C \boxed{32.7}$ $D \boxed{50.7}$ $E \boxed{68.7}$ $F \boxed{86.7}$

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 1.65$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 1.52 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 13.7 C 31.7 D 49.7 E 67.7 F 85.7

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 118 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 1.33 C 3.13 D 4.93 E 6.73 F 8.53

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.47$ m e $\theta \ge \theta_0 = 0.494$ rad.

A 0 B 160 C 340 D 520 E 700 F 880

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.48 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

4) Al vertice di un cono retto con raggio di base $r_0 = 7.35$ m e altezza $h_0 = 4.52$ m, è collocata una carica elettrica $q_0 = 3.38$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 18.9 C 36.9 D 54.9 E 72.9 F 90.9

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (7.12, 0, 4.49)$ e $\vec{b} = (0, 3.73, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A 0 B 1.54 C 3.34 D 5.14 E 6.94 F 8.74

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 11.5$ nC ed a = 3.35 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-1.11}$ C $\boxed{-2.91}$ D $\boxed{-4.71}$ E $\boxed{-6.51}$ F $\boxed{-8.31}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=7.28 \text{ Nm}^2/\text{C}$, $b=5.06 \text{ Nm}^2/\text{C}$ e $r_0=4.37 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-1.03}$ C $\boxed{-2.83}$ D $\boxed{-4.63}$ E $\boxed{-6.43}$ F $\boxed{-8.23}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 2.89$ N/C ed $x_0 = 3.27$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 1.49 C 3.29 D 5.09 E 6.89 F 8.69

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.87$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 3.59 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 260 C 440 D 620 E 800 F 980

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 124 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 1.49 C 3.29 D 5.09 E 6.89 F 8.69

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 1.49$ m e $\theta \ge \theta_0 = 0.123$ rad.

A 0 B 10.6 C 28.6 D 46.6 E 64.6 F 82.6

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 3.72 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 1.49 C 3.29 D 5.09 E 6.89 F 8.69

4) Al vertice di un cono retto con raggio di base $r_0 = 3.01$ m e altezza $h_0 = 2.89$ m, è collocata una carica elettrica $q_0 = 1.09$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 18.9 C 36.9 D 54.9 E 72.9 F 90.9

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (8.84, 0, 1.92)$ e $\vec{b} = (0, 2.07, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

 $A \boxed{0} \quad B \boxed{10.1} \quad C \boxed{28.1} \quad D \boxed{46.1} \quad E \boxed{64.1} \quad F \boxed{82.1}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 46.5$ nC ed a = 4.53 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-14.4}$ C $\boxed{-32.4}$ D $\boxed{-50.4}$ E $\boxed{-68.4}$ F $\boxed{-86.4}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=4.99 \text{ Nm}^2/\text{C}$, $b=7.34 \text{ Nm}^2/\text{C}$ e $r_0=4.65 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

 $A \boxed{0} B \boxed{0.242} C \boxed{0.422} D \boxed{0.602} E \boxed{0.782} F \boxed{0.962}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 3.20$ N/C ed $x_0 = 2.68$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 11.7 C 29.7 D 47.7 E 65.7 F 83.7

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.55$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr\cos\theta$, con k = 2.04 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 237 C 417 D 597 E 777 F 957

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0} \quad B \boxed{0.250} \quad C \boxed{0.430} \quad D \boxed{0.610} \quad E \boxed{0.790} \quad F \boxed{0.970}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 428 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0} \quad B \boxed{11.4} \quad C \boxed{29.4} \quad D \boxed{47.4} \quad E \boxed{65.4} \quad F \boxed{83.4}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.12$ m e $\theta \ge \theta_0 = 0.239$ rad.

A 0 B 128 C 308 D 488 E 668 F 848

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 3.94$ nC/m³. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 12.3 C 30.3 D 48.3 E 66.3 F 84.3

4) Al vertice di un cono retto con raggio di base $r_0 = 8.54$ m e altezza $h_0 = 1.45$ m, è collocata una carica elettrica $q_0 = 3.27$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 154 C 334 D 514 E 694 F 874

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (3.54, 0, 2.42)$ e $\vec{b} = (0, 2.72, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{2.15}$ C $\boxed{3.95}$ D $\boxed{5.75}$ E $\boxed{7.55}$ F $\boxed{9.35}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 11.5$ nC ed a = 3.09 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-2.26}$ C $\boxed{-4.06}$ D $\boxed{-5.86}$ E $\boxed{-7.66}$ F $\boxed{-9.46}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=8.44~\mathrm{Nm^2/C},\,b=2.10~\mathrm{Nm^2/C}$ e $r_0=2.98~\mathrm{m}.$ Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0.$

A $\boxed{0}$ B $\boxed{-2.72}$ C $\boxed{-4.52}$ D $\boxed{-6.32}$ E $\boxed{-8.12}$ F $\boxed{-9.92}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.54$ N/C ed $x_0 = 4.36$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

 $A \boxed{0}$ $B \boxed{1.67}$ $C \boxed{3.47}$ $D \boxed{5.27}$ $E \boxed{7.07}$ $F \boxed{8.87}$

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 4.16$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 2.35 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 249 C 429 D 609 E 789 F 969

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0} \quad B \boxed{0.226} \quad C \boxed{0.406} \quad D \boxed{0.586} \quad E \boxed{0.766} \quad F \boxed{0.946}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 347 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{2.02}$ $C \boxed{3.82}$ $D \boxed{5.62}$ $E \boxed{7.42}$ $F \boxed{9.22}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 0.663$ m e $\theta \ge \theta_0 = 0.770$ rad.

A 0 B 2.11 C 3.91 D 5.71 E 7.51 F 9.31

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 3.87 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

4) Al vertice di un cono retto con raggio di base $r_0 = 6.92$ m e altezza $h_0 = 3.74$ m, è collocata una carica elettrica $q_0 = 3.96$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 117 C 297 D 477 E 657 F 837

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (5.85, 0, 2.94)$ e $\vec{b} = (0, 1.53, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A 0 B 1.35 C 3.15 D 4.95 E 6.75 F 8.55

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 34.4$ nC ed a = 4.04 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-13.4}$ C $\boxed{-31.4}$ D $\boxed{-49.4}$ E $\boxed{-67.4}$ F $\boxed{-85.4}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=4.42 \text{ Nm}^2/\text{C}$, $b=5.90 \text{ Nm}^2/\text{C}$ e $r_0=1.82 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.74$ N/C ed $x_0 = 1.15$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 14.9 C 32.9 D 50.9 E 68.9 F 86.9

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.03$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 4.63 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 171 C 351 D 531 E 711 F 891

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 482 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 12.8 C 30.8 D 48.8 E 66.8 F 84.8

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 0.610$ m e $\theta \ge \theta_0 = 0.465$ rad.

A 0 B 1.35 C 3.15 D 4.95 E 6.75 F 8.55

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 3.10 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

4) Al vertice di un cono retto con raggio di base $r_0 = 9.65$ m e altezza $h_0 = 3.39$ m, è collocata una carica elettrica $q_0 = 1.17$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 26.2 C 44.2 D 62.2 E 80.2 F 98.2

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (9.09, 0, 9.97)$ e $\vec{b} = (0, 1.67, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-1.04}$ C $\boxed{-2.84}$ D $\boxed{-4.64}$ E $\boxed{-6.44}$ F $\boxed{-8.24}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 27.8$ nC ed a = 4.91 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-1.93}$ C $\boxed{-3.73}$ D $\boxed{-5.53}$ E $\boxed{-7.33}$ F $\boxed{-9.13}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=4.31 \text{ Nm}^2/\text{C}$, $b=9.07 \text{ Nm}^2/\text{C}$ e $r_0=3.47 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.12$ N/C ed $x_0 = 1.57$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 1.61 C 3.41 D 5.21 E 7.01 F 8.81

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 4.00$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 4.68 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 101 C 281 D 461 E 641 F 821

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 1.41 C 3.21 D 5.01 E 6.81 F 8.61

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r,θ,ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ,ϕ,z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x,y,z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 199 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0} \quad B \boxed{1.69} \quad C \boxed{3.49} \quad D \boxed{5.29} \quad E \boxed{7.09} \quad F \boxed{8.89}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.51$ m e $\theta \ge \theta_0 = 0.234$ rad.

A 0 B 162 C 342 D 522 E 702 F 882

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.71$ nC/m³. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 1.93 C 3.73 D 5.53 E 7.33 F 9.13

4) Al vertice di un cono retto con raggio di base $r_0 = 3.90$ m e altezza $h_0 = 1.62$ m, è collocata una carica elettrica $q_0 = 2.05$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 17.4 C 35.4 D 53.4 E 71.4 F 89.4

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (8.84, 0, 9.45)$ e $\vec{b} = (0, 2.05, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-0.164}$ C $\boxed{-0.344}$ D $\boxed{-0.524}$ E $\boxed{-0.704}$ F $\boxed{-0.884}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 34.7$ nC ed a = 3.86 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-14.8}$ C $\boxed{-32.8}$ D $\boxed{-50.8}$ E $\boxed{-68.8}$ F $\boxed{-86.8}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=7.07 \text{ Nm}^2/\text{C}$, $b=5.80 \text{ Nm}^2/\text{C}$ e $r_0=3.12 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-1.16}$ C $\boxed{-2.96}$ D $\boxed{-4.76}$ E $\boxed{-6.56}$ F $\boxed{-8.36}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.77$ N/C ed $x_0 = 1.63$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 10.8 C 28.8 D 46.8 E 64.8 F 82.8

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.21$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 3.64 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 279 C 459 D 639 E 819 F 999

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.155 \end{bmatrix} \quad C \begin{bmatrix} 0.335 \end{bmatrix} \quad D \begin{bmatrix} 0.515 \end{bmatrix} \quad E \begin{bmatrix} 0.695 \end{bmatrix} \quad F \begin{bmatrix} 0.875 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 389 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 10.3 C 28.3 D 46.3 E 64.3 F 82.3

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 0.686$ m e $\theta \ge \theta_0 = 0.361$ rad.

A 0 B 2.64 C 4.44 D 6.24 E 8.04 F 9.84

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 4.68 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 1.75 C 3.55 D 5.35 E 7.15 F 8.95

4) Al vertice di un cono retto con raggio di base $r_0 = 9.03$ m e altezza $h_0 = 2.63$ m, è collocata una carica elettrica $q_0 = 3.71$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 151 C 331 D 511 E 691 F 871

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (7.91, 0, 9.30)$ e $\vec{b} = (0, 2.49, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-2.45}$ C $\boxed{-4.25}$ D $\boxed{-6.05}$ E $\boxed{-7.85}$ F $\boxed{-9.65}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 29.8$ nC ed a = 1.67 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-13.9}$ C $\boxed{-31.9}$ D $\boxed{-49.9}$ E $\boxed{-67.9}$ F $\boxed{-85.9}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=6.23 \text{ Nm}^2/\text{C}$, $b=6.98 \text{ Nm}^2/\text{C}$ e $r_0=1.01 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A 0 B 1.11 C 2.91 D 4.71 E 6.51 F 8.31

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.15$ N/C ed $x_0 = 3.37$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 1.56 C 3.36 D 5.16 E 6.96 F 8.76

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.42$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 2.80 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 261 C 441 D 621 E 801 F 981

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A $\boxed{0}$ B $\boxed{0.256}$ C $\boxed{0.436}$ D $\boxed{0.616}$ E $\boxed{0.796}$ F $\boxed{0.976}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 278 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{1.98}$ $C \boxed{3.78}$ $D \boxed{5.58}$ $E \boxed{7.38}$ $F \boxed{9.18}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 1.55$ m e $\theta \ge \theta_0 = 0.958$ rad.

A 0 B 11.9 C 29.9 D 47.9 E 65.9 F 83.9

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 4.76 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 16.1 C 34.1 D 52.1 E 70.1 F 88.1

4) Al vertice di un cono retto con raggio di base $r_0 = 6.39$ m e altezza $h_0 = 2.67$ m, è collocata una carica elettrica $q_0 = 3.38$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 117 C 297 D 477 E 657 F 837

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (7.60, 0, 3.59)$ e $\vec{b} = (0, 2.93, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A 0 B 1.11 C 2.91 D 4.71 E 6.51 F 8.31

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 44.8$ nC ed a = 2.43 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-12.2}$ C $\boxed{-30.2}$ D $\boxed{-48.2}$ E $\boxed{-66.2}$ F $\boxed{-84.2}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a = 7.70 \text{ Nm}^2/\text{C}$, $b = 9.42 \text{ Nm}^2/\text{C}$ e $r_0 = 2.83 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r = r_0$.

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.97$ N/C ed $x_0 = 4.53$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 10.8 C 28.8 D 46.8 E 64.8 F 82.8

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 1.51$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 1.48 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 240 C 420 D 600 E 780 F 960

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A $\boxed{0}$ B $\boxed{0.0275}$ C $\boxed{0.0455}$ D $\boxed{0.0635}$ E $\boxed{0.0815}$ F $\boxed{0.0995}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 108 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{1.07}$ $C \boxed{2.87}$ $D \boxed{4.67}$ $E \boxed{6.47}$ $F \boxed{8.27}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.33$ m e $\theta \ge \theta_0 = 0.717$ rad.

A 0 B 145 C 325 D 505 E 685 F 865

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.02 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 15.8 C 33.8 D 51.8 E 69.8 F 87.8

4) Al vertice di un cono retto con raggio di base $r_0 = 4.05$ m e altezza $h_0 = 2.87$ m, è collocata una carica elettrica $q_0 = 4.68$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 111 C 291 D 471 E 651 F 831

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (5.73, 0, 5.48)$ e $\vec{b} = (0, 3.01, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{0.172}$ C $\boxed{0.352}$ D $\boxed{0.532}$ E $\boxed{0.712}$ F $\boxed{0.892}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 41.7$ nC ed a = 1.09 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-223}$ C $\boxed{-403}$ D $\boxed{-583}$ E $\boxed{-763}$ F $\boxed{-943}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=4.15 \text{ Nm}^2/\text{C}$, $b=3.79 \text{ Nm}^2/\text{C}$ e $r_0=1.39 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-1.65}$ C $\boxed{-3.45}$ D $\boxed{-5.25}$ E $\boxed{-7.05}$ F $\boxed{-8.85}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 2.20$ N/C ed $x_0 = 4.23$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 1.51 C 3.31 D 5.11 E 6.91 F 8.71

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.99$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 2.69 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 229 C 409 D 589 E 769 F 949

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 0.266 C 0.446 D 0.626 E 0.806 F 0.986

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 286 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.54$ m e $\theta \ge \theta_0 = 0.473$ rad.

A 0 B 167 C 347 D 527 E 707 F 887

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 4.64 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 24.8 C 42.8 D 60.8 E 78.8 F 96.8

4) Al vertice di un cono retto con raggio di base $r_0 = 3.36$ m e altezza $h_0 = 2.29$ m, è collocata una carica elettrica $q_0 = 1.81$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 26.6 C 44.6 D 62.6 E 80.6 F 98.6

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (1.20, 0, 8.01)$ e $\vec{b} = (0, 1.66, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

 $A \ \boxed{0} \quad B \ \boxed{-2.59} \quad C \ \boxed{-4.39} \quad D \ \boxed{-6.19} \quad E \ \boxed{-7.99} \quad F \ \boxed{-9.79}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 44.5$ nC ed a = 3.71 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-20.5}$ C $\boxed{-38.5}$ D $\boxed{-56.5}$ E $\boxed{-74.5}$ F $\boxed{-92.5}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=2.67 \text{ Nm}^2/\text{C}$, $b=8.31 \text{ Nm}^2/\text{C}$ e $r_0=1.89 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.77$ N/C ed $x_0 = 4.54$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 2.03 C 3.83 D 5.63 E 7.43 F 9.23

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.05$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 3.35 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 149 C 329 D 509 E 689 F 869

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.227 \end{bmatrix} \quad C \begin{bmatrix} 0.407 \end{bmatrix} \quad D \begin{bmatrix} 0.587 \end{bmatrix} \quad E \begin{bmatrix} 0.767 \end{bmatrix} \quad F \begin{bmatrix} 0.947 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 189 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{1.42}$ $C \boxed{3.22}$ $D \boxed{5.02}$ $E \boxed{6.82}$ $F \boxed{8.62}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.08$ m e $\theta \ge \theta_0 = 0.491$ rad.

A 0 B 221 C 401 D 581 E 761 F 941

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 1.66$ nC/m³. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 26.9 C 44.9 D 62.9 E 80.9 F 98.9

4) Al vertice di un cono retto con raggio di base $r_0 = 7.56$ m e altezza $h_0 = 1.08$ m, è collocata una carica elettrica $q_0 = 1.10$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 17.3 C 35.3 D 53.3 E 71.3 F 89.3

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (5.91, 0, 3.15)$ e $\vec{b} = (0, 4.46, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

 $A \ \boxed{0} \ B \ \boxed{1.50} \ C \ \boxed{3.30} \ D \ \boxed{5.10} \ E \ \boxed{6.90} \ F \ \boxed{8.70}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 12.3$ nC ed a = 4.93 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-1.42}$ C $\boxed{-3.22}$ D $\boxed{-5.02}$ E $\boxed{-6.82}$ F $\boxed{-8.62}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=3.40 \text{ Nm}^2/\text{C}$, $b=5.44 \text{ Nm}^2/\text{C}$ e $r_0=4.97 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

 $A \boxed{0} B \boxed{0.191} C \boxed{0.371} D \boxed{0.551} E \boxed{0.731} F \boxed{0.911}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.13$ N/C ed $x_0 = 4.39$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 2.53 C 4.33 D 6.13 E 7.93 F 9.73

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.14$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr\cos\theta$, con k = 3.16 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 178 C 358 D 538 E 718 F 898

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.272 \end{bmatrix} \quad C \begin{bmatrix} 0.452 \end{bmatrix} \quad D \begin{bmatrix} 0.632 \end{bmatrix} \quad E \begin{bmatrix} 0.812 \end{bmatrix} \quad F \begin{bmatrix} 0.992 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 316 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{1.19}$ $C \boxed{2.99}$ $D \boxed{4.79}$ $E \boxed{6.59}$ $F \boxed{8.39}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.01$ m e $\theta \ge \theta_0 = 0.277$ rad.

A 0 B 212 C 392 D 572 E 752 F 932

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 3.95 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 21.1 C 39.1 D 57.1 E 75.1 F 93.1

4) Al vertice di un cono retto con raggio di base $r_0 = 9.62$ m e altezza $h_0 = 4.51$ m, è collocata una carica elettrica $q_0 = 2.36$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 22.7 \end{bmatrix} \quad C \begin{bmatrix} 40.7 \end{bmatrix} \quad D \begin{bmatrix} 58.7 \end{bmatrix} \quad E \begin{bmatrix} 76.7 \end{bmatrix} \quad F \begin{bmatrix} 94.7 \end{bmatrix}$

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (1.10, 0, 9.98)$ e $\vec{b} = (0, 2.06, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

 $A \boxed{0}$ $B \boxed{-12.9}$ $C \boxed{-30.9}$ $D \boxed{-48.9}$ $E \boxed{-66.9}$ $F \boxed{-84.9}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 13.3$ nC ed a = 3.29 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-2.41}$ C $\boxed{-4.21}$ D $\boxed{-6.01}$ E $\boxed{-7.81}$ F $\boxed{-9.61}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a = 5.18 \text{ Nm}^2/\text{C}$, $b = 6.15 \text{ Nm}^2/\text{C}$ e $r_0 = 3.67 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r = r_0$.

A 0 B 0.278 C 0.458 D 0.638 E 0.818 F 0.998

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 3.45$ N/C ed $x_0 = 3.54$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 2.38 C 4.18 D 5.98 E 7.78 F 9.58

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.27$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 1.13 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 126 C 306 D 486 E 666 F 846

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A $\boxed{0}$ B $\boxed{0.227}$ C $\boxed{0.407}$ D $\boxed{0.587}$ E $\boxed{0.767}$ F $\boxed{0.947}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 113 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.19$ m e $\theta \ge \theta_0 = 0.116$ rad.

A 0 B 131 C 311 D 491 E 671 F 851

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 1.58 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 1.20 C 3.00 D 4.80 E 6.60 F 8.40

4) Al vertice di un cono retto con raggio di base $r_0 = 8.97$ m e altezza $h_0 = 3.57$ m, è collocata una carica elettrica $q_0 = 1.54$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 18.8 C 36.8 D 54.8 E 72.8 F 90.8

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (5.30, 0, 7.36)$ e $\vec{b} = (0, 4.51, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-1.17}$ C $\boxed{-2.97}$ D $\boxed{-4.77}$ E $\boxed{-6.57}$ F $\boxed{-8.37}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 36.6$ nC ed a = 2.67 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-14.6}$ C $\boxed{-32.6}$ D $\boxed{-50.6}$ E $\boxed{-68.6}$ F $\boxed{-86.6}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=9.14~\mathrm{Nm^2/C},\,b=1.52~\mathrm{Nm^2/C}$ e $r_0=4.94~\mathrm{m}.$ Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0.$

A $\boxed{0}$ B $\boxed{-2.76}$ C $\boxed{-4.56}$ D $\boxed{-6.36}$ E $\boxed{-8.16}$ F $\boxed{-9.96}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.99$ N/C ed $x_0 = 2.09$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 23.5 C 41.5 D 59.5 E 77.5 F 95.5

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 4.28$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 2.63 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 114 C 294 D 474 E 654 F 834

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.187 \end{bmatrix} \quad C \begin{bmatrix} 0.367 \end{bmatrix} \quad D \begin{bmatrix} 0.547 \end{bmatrix} \quad E \begin{bmatrix} 0.727 \end{bmatrix} \quad F \begin{bmatrix} 0.907 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 337 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0} \quad B \boxed{1.75} \quad C \boxed{3.55} \quad D \boxed{5.35} \quad E \boxed{7.15} \quad F \boxed{8.95}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 2.63$ m e $\theta \ge \theta_0 = 0.407$ rad.

A $\boxed{0}$ B $\boxed{20.0}$ C $\boxed{38.0}$ D $\boxed{56.0}$ E $\boxed{74.0}$ F $\boxed{92.0}$

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 4.20 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

4) Al vertice di un cono retto con raggio di base $r_0 = 3.97$ m e altezza $h_0 = 3.05$ m, è collocata una carica elettrica $q_0 = 3.41$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 21.2 C 39.2 D 57.2 E 75.2 F 93.2

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (7.00, 0, 4.07)$ e $\vec{b} = (0, 3.33, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

 $A \boxed{0}$ $B \boxed{1.50}$ $C \boxed{3.30}$ $D \boxed{5.10}$ $E \boxed{6.90}$ $F \boxed{8.70}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 40.4$ nC ed a = 3.22 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-24.8}$ C $\boxed{-42.8}$ D $\boxed{-60.8}$ E $\boxed{-78.8}$ F $\boxed{-96.8}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=8.19 \text{ Nm}^2/\text{C}$, $b=8.18 \text{ Nm}^2/\text{C}$ e $r_0=3.37 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

 $A \ \boxed{0} \quad B \ \boxed{-2.40 \times 10^{-3}} \quad C \ \boxed{-4.20 \times 10^{-3}} \quad D \ \boxed{-6.00 \times 10^{-3}} \quad E \ \boxed{-7.80 \times 10^{-3}} \quad F \ \boxed{-9.60 \times 10^{-3}}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 2.31$ N/C ed $x_0 = 2.64$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 1.40 C 3.20 D 5.00 E 6.80 F 8.60

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.18$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 3.35 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 111 C 291 D 471 E 651 F 831

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \begin{bmatrix} 0 \end{bmatrix} \quad B \begin{bmatrix} 0.120 \end{bmatrix} \quad C \begin{bmatrix} 0.300 \end{bmatrix} \quad D \begin{bmatrix} 0.480 \end{bmatrix} \quad E \begin{bmatrix} 0.660 \end{bmatrix} \quad F \begin{bmatrix} 0.840 \end{bmatrix}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 393 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.94$ m e $\theta \ge \theta_0 = 0.961$ rad.

A 0 B 124 C 304 D 484 E 664 F 844

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.77$ nC/m³. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 164 C 344 D 524 E 704 F 884

4) Al vertice di un cono retto con raggio di base $r_0 = 7.73$ m e altezza $h_0 = 3.04$ m, è collocata una carica elettrica $q_0 = 1.44$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 15.6 C 33.6 D 51.6 E 69.6 F 87.6

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (6.23, 0, 7.06)$ e $\vec{b} = (0, 4.69, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-2.75}$ C $\boxed{-4.55}$ D $\boxed{-6.35}$ E $\boxed{-8.15}$ F $\boxed{-9.95}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 16.7$ nC ed a = 2.00 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-26.5}$ C $\boxed{-44.5}$ D $\boxed{-62.5}$ E $\boxed{-80.5}$ F $\boxed{-98.5}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=6.03 \text{ Nm}^2/\text{C}$, $b=2.27 \text{ Nm}^2/\text{C}$ e $r_0=1.85 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-2.53}$ C $\boxed{-4.33}$ D $\boxed{-6.13}$ E $\boxed{-7.93}$ F $\boxed{-9.73}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 3.86$ N/C ed $x_0 = 3.34$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 11.4 C 29.4 D 47.4 E 65.4 F 83.4

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.95$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 2.30 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 113 C 293 D 473 E 653 F 833

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 251 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{1.27}$ $C \boxed{3.07}$ $D \boxed{4.87}$ $E \boxed{6.67}$ $F \boxed{8.47}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.43$ m e $\theta \ge \theta_0 = 0.844$ rad.

A 0 B 251 C 431 D 611 E 791 F 971

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 3.12 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 138 C 318 D 498 E 678 F 858

4) Al vertice di un cono retto con raggio di base $r_0 = 6.72$ m e altezza $h_0 = 2.24$ m, è collocata una carica elettrica $q_0 = 2.92$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 113 C 293 D 473 E 653 F 833

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (4.53, 0, 4.22)$ e $\vec{b} = (0, 3.48, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{0.223}$ C $\boxed{0.403}$ D $\boxed{0.583}$ E $\boxed{0.763}$ F $\boxed{0.943}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 19.8$ nC ed a = 3.42 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-10.8}$ C $\boxed{-28.8}$ D $\boxed{-46.8}$ E $\boxed{-64.8}$ F $\boxed{-82.8}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=2.73 \text{ Nm}^2/\text{C}$, $b=1.43 \text{ Nm}^2/\text{C}$ e $r_0=3.29 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-1.06}$ C $\boxed{-2.86}$ D $\boxed{-4.66}$ E $\boxed{-6.46}$ F $\boxed{-8.26}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.69$ N/C ed $x_0 = 3.86$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 11.9 C 29.9 D 47.9 E 65.9 F 83.9

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.48$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 1.88 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 223 C 403 D 583 E 763 F 943

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A $\boxed{0}$ B $\boxed{0.249}$ C $\boxed{0.429}$ D $\boxed{0.609}$ E $\boxed{0.789}$ F $\boxed{0.969}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 288 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.79$ m e $\theta \ge \theta_0 = 0.277$ rad.

A 0 B 189 C 369 D 549 E 729 F 909

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 4.12 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

4) Al vertice di un cono retto con raggio di base $r_0 = 4.14$ m e altezza $h_0 = 2.08$ m, è collocata una carica elettrica $q_0 = 1.14$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 17.5 C 35.5 D 53.5 E 71.5 F 89.5

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (8.04, 0, 4.11)$ e $\vec{b} = (0, 3.59, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

 $A \boxed{0} \quad B \boxed{2.78} \quad C \boxed{4.58} \quad D \boxed{6.38} \quad E \boxed{8.18} \quad F \boxed{9.98}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 29.2$ nC ed a = 4.67 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-1.31}$ C $\boxed{-3.11}$ D $\boxed{-4.91}$ E $\boxed{-6.71}$ F $\boxed{-8.51}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=4.14 \text{ Nm}^2/\text{C}$, $b=7.79 \text{ Nm}^2/\text{C}$ e $r_0=2.32 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.95$ N/C ed $x_0 = 3.16$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 15.4 C 33.4 D 51.4 E 69.4 F 87.4

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 1.17$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr\cos\theta$, con k = 4.26 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 190 C 370 D 550 E 730 F 910

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0} \quad B \boxed{0.110} \quad C \boxed{0.290} \quad D \boxed{0.470} \quad E \boxed{0.650} \quad F \boxed{0.830}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r,θ,ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ,ϕ,z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x,y,z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 417 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 11.1 C 29.1 D 47.1 E 65.1 F 83.1

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 1.15$ m e $\theta \ge \theta_0 = 0.963$ rad.

A 0 B 16.5 C 34.5 D 52.5 E 70.5 F 88.5

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 2.78 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

4) Al vertice di un cono retto con raggio di base $r_0 = 5.57$ m e altezza $h_0 = 4.94$ m, è collocata una carica elettrica $q_0 = 4.14$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 24.7 C 42.7 D 60.7 E 78.7 F 96.7

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (7.77, 0, 2.63)$ e $\vec{b} = (0, 3.06, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A 0 B 11.1 C 29.1 D 47.1 E 65.1 F 83.1

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 39.2$ nC ed a = 4.80 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-10.8}$ C $\boxed{-28.8}$ D $\boxed{-46.8}$ E $\boxed{-64.8}$ F $\boxed{-82.8}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=6.32 \text{ Nm}^2/\text{C}$, $b=9.02 \text{ Nm}^2/\text{C}$ e $r_0=1.84 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A 0 B 1.66 C 3.46 D 5.26 E 7.06 F 8.86

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.59$ N/C ed $x_0 = 3.04$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 14.8 C 32.8 D 50.8 E 68.8 F 86.8

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 2.01$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr\cos\theta$, con k = 2.14 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 113 C 293 D 473 E 653 F 833

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r,θ,ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ,ϕ,z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x,y,z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 425 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{11.3}$ $C \boxed{29.3}$ $D \boxed{47.3}$ $E \boxed{65.3}$ $F \boxed{83.3}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.63$ m e $\theta \ge \theta_0 = 0.964$ rad.

A 0 B 164 C 344 D 524 E 704 F 884

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 1.09 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 11.6 C 29.6 D 47.6 E 65.6 F 83.6

4) Al vertice di un cono retto con raggio di base $r_0 = 4.15$ m e altezza $h_0 = 2.47$ m, è collocata una carica elettrica $q_0 = 1.95$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 17.8 C 35.8 D 53.8 E 71.8 F 89.8

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (1.36, 0, 3.30)$ e $\vec{b} = (0, 4.44, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-2.49}$ C $\boxed{-4.29}$ D $\boxed{-6.09}$ E $\boxed{-7.89}$ F $\boxed{-9.69}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 21.8$ nC ed a = 3.83 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-2.25}$ C $\boxed{-4.05}$ D $\boxed{-5.85}$ E $\boxed{-7.65}$ F $\boxed{-9.45}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=2.93 \text{ Nm}^2/\text{C}$, $b=1.82 \text{ Nm}^2/\text{C}$ e $r_0=1.30 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-2.22}$ C $\boxed{-4.02}$ D $\boxed{-5.82}$ E $\boxed{-7.62}$ F $\boxed{-9.42}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 4.54$ N/C ed $x_0 = 1.58$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 10.3 C 28.3 D 46.3 E 64.3 F 82.3

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 1.52$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 4.59 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 140 C 320 D 500 E 680 F 860

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0} B \boxed{0.200} C \boxed{0.380} D \boxed{0.560} E \boxed{0.740} F \boxed{0.920}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 465 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

A 0 B 12.4 C 30.4 D 48.4 E 66.4 F 84.4

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 1.17$ m e $\theta \ge \theta_0 = 0.681$ rad.

A 0 B 18.0 C 36.0 D 54.0 E 72.0 F 90.0

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 1.60 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 13.2 C 31.2 D 49.2 E 67.2 F 85.2

4) Al vertice di un cono retto con raggio di base $r_0 = 6.80$ m e altezza $h_0 = 3.24$ m, è collocata una carica elettrica $q_0 = 4.80$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 154 C 334 D 514 E 694 F 874

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (8.62, 0, 9.17)$ e $\vec{b} = (0, 2.27, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-0.163}$ C $\boxed{-0.343}$ D $\boxed{-0.523}$ E $\boxed{-0.703}$ F $\boxed{-0.883}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 31.4$ nC ed a = 4.56 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-2.40}$ C $\boxed{-4.20}$ D $\boxed{-6.00}$ E $\boxed{-7.80}$ F $\boxed{-9.60}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=6.08 \text{ Nm}^2/\text{C}$, $b=3.91 \text{ Nm}^2/\text{C}$ e $r_0=4.84 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

 $A \boxed{0} \quad B \boxed{-0.100} \quad C \boxed{-0.280} \quad D \boxed{-0.460} \quad E \boxed{-0.640} \quad F \boxed{-0.820}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 3.88$ N/C ed $x_0 = 2.03$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 18.8 C 36.8 D 54.8 E 72.8 F 90.8

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.59$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 1.92 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 254 C 434 D 614 E 794 F 974

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0} \quad B \boxed{0.106} \quad C \boxed{0.286} \quad D \boxed{0.466} \quad E \boxed{0.646} \quad F \boxed{0.826}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r, θ, ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ, ϕ, z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x, y, z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x > 0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 280 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{2.04}$ $C \boxed{3.84}$ $D \boxed{5.64}$ $E \boxed{7.44}$ $F \boxed{9.24}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 4.82$ m e $\theta \ge \theta_0 = 0.141$ rad.

A 0 B 121 C 301 D 481 E 661 F 841

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 1.34 \text{ nC/m}^3$. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 2.28 C 4.08 D 5.88 E 7.68 F 9.48

4) Al vertice di un cono retto con raggio di base $r_0 = 9.86$ m e altezza $h_0 = 1.99$ m, è collocata una carica elettrica $q_0 = 4.90$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 222 C 402 D 582 E 762 F 942

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (1.86, 0, 6.17)$ e $\vec{b} = (0, 3.86, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-11.8}$ C $\boxed{-29.8}$ D $\boxed{-47.8}$ E $\boxed{-65.8}$ F $\boxed{-83.8}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 16.9$ nC ed a = 3.49 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-1.62}$ C $\boxed{-3.42}$ D $\boxed{-5.22}$ E $\boxed{-7.02}$ F $\boxed{-8.82}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r_3^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r_3^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=8.80 \text{ Nm}^2/\text{C}$, $b=5.28 \text{ Nm}^2/\text{C}$ e $r_0=3.83 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A $\boxed{0}$ B $\boxed{-2.12}$ C $\boxed{-3.92}$ D $\boxed{-5.72}$ E $\boxed{-7.52}$ F $\boxed{-9.32}$

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.61$ N/C ed $x_0 = 4.89$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

A 0 B 1.44 C 3.24 D 5.04 E 6.84 F 8.64

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 3.38$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr \cos \theta$, con k = 4.12 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 165 C 345 D 525 E 705 F 885

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

 $A \boxed{0} \quad B \boxed{0.166} \quad C \boxed{0.346} \quad D \boxed{0.526} \quad E \boxed{0.706} \quad F \boxed{0.886}$

Negli esercizi seguenti le coordinate polari sferiche vengono indicate con i simboli r,θ,ϕ , dove r è la distanza dall'origine O, θ è l'angolo polare (colatitudine) e ϕ è l'azimut; le coordinate cilindriche vengono indicate con i simboli ρ,ϕ,z , dove ρ è la distanza dall'asse polare, ϕ è l'azimut e z è la quota; le coordinate cartesiane vengono indicate con i simboli x,y,z. Quando più tipi di coordinate sono usati nello stesso esercizio, salvo avviso contrario i diversi sistemi sono associati nel modo usuale: origini coincidenti, assi polari coincidenti tra loro e coincidenti con l'asse z, origine degli azimut coincidente con il semiasse x>0, ecc.

1) Il flusso di un campo elettrico attraverso ciascuna faccia di un dado è uguale a $\Phi_n(\vec{E}) = (-1)^n n \Phi_0$, con n pari all' indice della faccia (n = 1, ..., 6) e $\Phi_0 = 102 \text{ Nm}^2/\text{C}$. Determinare la carica elettrica, in nC, racchiusa entro il dado.

 $A \boxed{0}$ $B \boxed{2.71}$ $C \boxed{4.51}$ $D \boxed{6.31}$ $E \boxed{8.11}$ $F \boxed{9.91}$

2) Determinare l'area, in m², della superficie totale del solido V definito dalle relazioni, espresse in coordinate sferiche, $r \le r_0 = 3.71$ m e $\theta \ge \theta_0 = 0.467$ rad.

A 0 B 183 C 363 D 543 E 723 F 903

3) Nel caso del problema precedente (2), all'interno del volume V è presente una carica elettrica con densità volumetrica $\rho_c = \rho_0 e^{-r/r_0}$, con $\rho_0 = 3.27$ nC/m³. Determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 25.9 C 43.9 D 61.9 E 79.9 F 97.9

4) Al vertice di un cono retto con raggio di base $r_0 = 9.71$ m e altezza $h_0 = 1.99$ m, è collocata una carica elettrica $q_0 = 1.36$ nC. Determinare il flusso, in N m²/C, del campo elettrico generato dalla carica elettrica attraverso la superficie di base del cono.

A 0 B 25.4 C 43.4 D 61.4 E 79.4 F 97.4

5) In un sistema di coordinate cartesiane, sono dati i vettori $\vec{a} = (1.71, 0, 7.84)$ e $\vec{b} = (0, 2.17, 0)$, entrambi applicati nel punto P di coordinate (p, 0, p). Data la terna di versori in coordinate sferiche \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ nel punto P, determinare la proiezione sul versore \hat{e}_r del vettore $\vec{c} = \vec{a} \times \vec{b}$.

A $\boxed{0}$ B $\boxed{-2.21}$ C $\boxed{-4.01}$ D $\boxed{-5.81}$ E $\boxed{-7.61}$ F $\boxed{-9.41}$

6) In un sistema di coordinate cartesiane, sono poste le cariche elettriche $2q_0$ nel punto di coordinate (a, 0, 0), $-3q_0$ nel punto di coordinate (0, a, 0), $2q_0$ nel punto di coordinate (-a, 0, 0), e $-3q_0$ nel punto di coordinate (0, -a, 0), con $q_0 = 19.0$ nC ed a = 3.70 m. Determinare la componente z del campo elettrico, in N/C, nel punto di coordinate (0, 0, a).

A $\boxed{0}$ B $\boxed{-1.62}$ C $\boxed{-3.42}$ D $\boxed{-5.22}$ E $\boxed{-7.02}$ F $\boxed{-8.82}$

7) In un sistema di coordinate sferiche, si consideri il campo elettrico

$$\vec{E} = \begin{cases} \frac{a}{r^3} \vec{r} & \text{per} \quad 0 < r < r_0 \\ \frac{b}{r^3} \vec{r} & \text{per} \quad r > r_0 \end{cases}$$

con $a=4.60 \text{ Nm}^2/\text{C}$, $b=6.76 \text{ Nm}^2/\text{C}$ e $r_0=1.25 \text{ m}$. Determinare, in pC/m², la densità superficiale di carica elettrica sulla superficie sferica di raggio $r=r_0$.

A 0 B 12.2 C 30.2 D 48.2 E 66.2 F 84.2

8) In un sistema di coordinate cartesiane, è dato il campo elettrico

$$\vec{E} = \begin{cases} E_0 \sin(\frac{\pi x}{2x_0}) \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| < x_0 \\ E_0 \cdot \frac{x}{|x|} \vec{i} & \text{per} \quad |x| > x_0 \end{cases}$$

 \vec{i} essendo il versore lungo l' asse x, $E_0 = 1.14$ N/C ed $x_0 = 2.90$ m. Determinare la densità volumetrica di carica elettrica, in pC/m³, in un punto di ascissa $x = x_0/2$.

 $A \boxed{0}$ $B \boxed{2.07}$ $C \boxed{3.87}$ $D \boxed{5.67}$ $E \boxed{7.47}$ $F \boxed{9.27}$

9) In un sistema di coordinate sferiche, nella regione individuata dalla relazione $r \le r_0$, con $r_0 = 4.83$ m, è data una distribuzione di carica elettrica con densità volumetrica $\rho_c = kr\cos\theta$, con k = 3.16 pC/m⁴. Determinare la carica elettrica complessiva, in pC, presente nella regione $r \le r_0$.

A 0 B 126 C 306 D 486 E 666 F 846

10) Nel caso del problema precedente (9), determinare il modulo del campo elettrico, in N/C, nell'origine del sistema di riferimento.

A 0 B 1.39 C 3.19 D 4.99 E 6.79 F 8.59