Università di Pisa - Dipartimento di Ingegneria Civile e Industriale

Corso di Laurea in Ingegneria Aerospaziale

Fisica Generale II e Elettronica

Appello 4 - 10/09/2018

Soluzioni

PROBLEMA 1

- 1) $E(r) = -\frac{d\phi}{dr} = \frac{q}{4\pi\epsilon_0} \frac{q}{r^2} e^{-\alpha r} (\alpha r + \frac{\alpha^2 r^2}{2} + 1)$. Nel caso si ha $\alpha = 0$, si ha il campo elettrico di una carica puntiforme q posta nell'origine del sistema di riferimento.
- 2) Si può ottenere la carica elettrica all'interno di una sfera di raggio R mediante il teorema di Gauss.
- Si ricorda che il campo elettrico ha simmetria sferica. $Q(R) = \epsilon_0 \phi_R(\vec{E}) = q e^{-\alpha R} (\alpha R + \frac{\alpha^2 R^2}{2} + 1)$.
- 3) Si ha il limite per $R \to 0$, Q(R) = q. Si ha il limite $R \to \infty$, Q(R) = 0. Nell'origine del sistema di riferimento di trova una carica elettrica puntiforme di valore q, la carica totale è 0, la carica di volume totale è -q.
- 4) Si ha $\rho = \epsilon_0 \nabla \cdot \vec{E} = -\frac{q\alpha^3}{8\pi} e^{-\alpha r}$. La densità di carica di volume è negativa.
- 5) La carica totale del volume è data dall'integrale su tutto lo spazio che è -q. Si può verificare mediante il calcolo diretto $\int_0^\infty \rho(r)dV = -q.$

PROBLEMA 2

- 1) Nel piano x=0 i fili hanno corrente con verso $-\vec{e}_y$. Nel piano x=2a i fili hanno corrente con verso $+\vec{e}_y$. Si ha il Teorema di Ampere, $B_0h=\mu_0I_fnh$. Si ha $B_0=\mu_0I_fn$, si ha $I_f=\frac{B_0}{\mu_0n}$
- 2) Si ha velocità della spira è costante v_0 , il tempo di ingresso nella regione di campo magnetico è $T=\frac{a}{v_0}$. Si determina la forza elettromotrice indotta e la corrente indotta dalla equazione del circuito $-RI + fem_{ind} = 0.$
- $0 < t < T, x_a < a, \phi_B = Bax_a, fem_{ind} = -Bav_0, I = -\frac{Bav_0}{R};$
- T < t < 2T, $a < x_a < 2a$, $\phi_B = Ba^2$, $fem_{ind} = 0$, I = 0;
- 2T < t < 3T, $2a < x_a < 3a$, $\phi_B = Ba(3a x_a)$, $fem_{ind} = Bav_0$, $I = \frac{Bav_0}{R}$;
- $t > 3T, x_a > 3a, \phi_B = 0, fem_{ind} = 0, I = 0;$
- 3) Si determina la forza esercitata sulla spira dal campo magnetico. Si ha
- $\begin{aligned} 0 &< t < T, \ \vec{F}_m = -\frac{(Ba)^2 v_0}{R} \vec{e}_x; \\ 2T &< t < 3T, \ \vec{F}_m = -\frac{(Ba)^2 v_0}{R} \vec{e}_x; \end{aligned}$
- L'operatore deve esercitare la forza $\vec{F}_{op} = -\vec{F}_m$. Il lavoro compiuto dell'operatore è $L_{op} = \int_0^T \vec{F}_{op}$. $\vec{v}dt + \int_{2T}^{3T} \vec{F}_{op} \cdot \vec{v}dt = \frac{2B^2 a^3 v_0}{R}$
- Si ha l'energia dissipata per effetto Joule è $\Delta E_{Joule} = \int_0^T I^2 R dt + \int_{2T}^{3T} I^2 R dt = 2 \frac{B^2 a^3 v_0}{R}$.
- Si ha $P_{fem_{ind}} = P_{Joule}$, $P_{op} + P_{F_m} = \frac{dE_K}{dt} = 0$. Si ha $P_{fem_{ind}} + P_{F_m} + P_{op} = P_{Joule}$. Si ha $P_{fem_{ind}} + P_{F_m} = P_{Joule}$

- 4) Si ha $-RI + fem_{ind} = 0$, si ha $I(t) = -\frac{Ba}{R}v(t)$. Si ha $\vec{F}_m = -\frac{(Ba)^2v(t)}{R}\vec{e}_x$, si ha $m\frac{dv}{dt} = -\frac{(Ba)^2v(t)}{R}$. Si ha $v(t) = v_0e^{-t/\tau}$ con $\tau = \frac{mR}{(Ba)^2}$. 5) Si ha $x_a(t) = v_0\frac{mR}{(Ba)^2}(1 e^{-t/\tau})$, si ha $x_{max} = v_0\tau$. La spira entra completamente nella regione con $\vec{B} \neq 0$ se $x_{max} \geq a$, $\frac{v_0 mR}{(Ba)^2} \geq a$, $v_0 \geq \frac{B^2 a^3}{mR}$