Università di Pisa - Dipartimento di Ingegneria Civile e Industriale

Corso di Laurea in Ingegneria Aerospaziale

Fisica Generale II e Elettronica

Appello 7 - 15/02/2017

Soluzioni

PROBLEMA 1

1)
$$V(x,y,z) = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{\sqrt{x^2 + y^2 + (x - \frac{d}{2})^2}} + \frac{1}{\sqrt{x^2 + y^2 + (x + \frac{d}{2})^2}} \right)$$

Asse
$$x$$
, $V(x,0,0) = \frac{1}{4\pi\epsilon_0} \frac{2}{\sqrt{x^2 + \frac{d^2}{4}}}$, $E_x(x,0,0) = \frac{2q}{4\pi\epsilon_0} \frac{x}{(x^2 + \frac{d^2}{4})^{3/2}}$

Asse
$$x$$
, $V(0, y, 0) = \frac{1}{4\pi\epsilon_0} \frac{2}{\sqrt{y^2 + \frac{d^2}{4}}}$, $E_y(0, y, 0) = \frac{2q}{4\pi\epsilon_0} \frac{y}{(y^2 + \frac{d^2}{4})^{3/2}}$

Asse $y, V(0,0,z) = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{|z - \frac{d}{2}|} + \frac{1}{|z + \frac{d}{2}|} \right)$, di conseguenza il campo elettrico vale per $|z| < \frac{d}{2}, E_z(0,0,z) = \frac{-qd}{4\pi\epsilon_0} \frac{2z}{(\frac{d^2}{4} - z^2)^2}$

per
$$|z| < \frac{d}{2}$$
, $E_z(0,0,z) = \frac{-qd}{4\pi\epsilon_0} \frac{2z}{(\frac{d^2}{4}-z^2)^2}$

per
$$|z| > \frac{d}{2}$$
, $E_z(0,0,z) = \frac{qd}{4\pi\epsilon_0} \frac{2z}{(\frac{d^2}{4} - z^2)^2}$

Per
$$|x| << \frac{d}{2}$$
, $E_x(x,0,0) \simeq \frac{qx}{\pi\epsilon_0 d^2}$

Per
$$|y| << \frac{d}{2}, E_y(0, y, 0) \simeq \frac{qy}{\pi \epsilon_0 d^3}$$

Per
$$|x| << \frac{d}{2}$$
, $E_x(x,0,0) \simeq \frac{qx}{\pi \epsilon_0 d^3}$
Per $|y| << \frac{d}{2}$, $E_y(0,y,0) \simeq \frac{qy}{\pi \epsilon_0 d^3}$
Per $|z| << \frac{d}{2}$, $E_y(0,0,z) \simeq -\frac{8qz}{\pi \epsilon_0 d^3}$

4)

Il moto è di oscillazione, tra i punti dell'asse z di coordinate z=-a e z=a. La frequenza di oscillazione è $\omega = \sqrt{\frac{8q^2}{m\pi\epsilon_0 d^3}}$. Si ha $z(t) = a\cos(\omega t)$.

La particella ha velocità massima in O. Si ha $v = a\omega$. Si può ottenere lo stesso risultato anche applicando il teorema di conservazione dell'energia. $\frac{1}{2}mv^2 = qV(a)$, con a << d. Si ottiene $\frac{1}{2}mv^2 = \frac{1}{2}\frac{8q^2}{\pi\epsilon_0 d^3}a^2$.

PROBLEMA 2

1)
$$I(t)_{spira} = \frac{\mu_0}{2\pi} \ln(\frac{d+L}{d}) L \frac{I_0}{R\tau} e^{-t/\tau}$$

 $F(t) = \frac{\mu_0}{2\pi} L(\frac{1}{d} - \frac{1}{d+L}) I_{filo} \times I_{spira}$, nel piano della spira e del filo, ortogonale al filo, nella direzione dalla spira al filo

$$E = \frac{1}{2} \left(\frac{\mu_0}{2\pi} \ln(\frac{d+L}{d}) L I_0 \right)^2 \frac{1}{R\tau} (1 - e^{-2})$$

$$I(t)_{spira} = \frac{\mu_0}{2\pi} \frac{L^2 at}{(x(t)(x(t)+L))} \frac{1}{R} I_0 e^{-1}$$
, con $x(t) = d + \frac{1}{2} a(t-\tau)^2$.

$$F(t) = \frac{\mu_0}{2\pi} L(\frac{1}{x(t)} - \frac{1}{x(t)+L}) I_0 e^{-1} I(t)_{spira} + ma$$